Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Evaluasi .
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.3
Kalikan dengan .
Langkah 1.5
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Evaluasi .
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Kalikan dengan .
Langkah 2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.6
Sederhanakan.
Langkah 2.6.1
Tambahkan dan .
Langkah 2.6.2
Susun kembali suku-suku.
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Langkah 5.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 5.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.4
Terapkan aturan konstanta.
Langkah 5.5
Gabungkan dan .
Langkah 5.6
Sederhanakan.
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.3
Kalikan dengan .
Langkah 8.4
Evaluasi .
Langkah 8.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.4.3
Kalikan dengan .
Langkah 8.5
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.6
Susun kembali suku-suku.
Langkah 9
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 9.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 9.1.3
Gabungkan suku balikan dalam .
Langkah 9.1.3.1
Kurangi dengan .
Langkah 9.1.3.2
Tambahkan dan .
Langkah 9.1.3.3
Susun kembali faktor-faktor dalam suku-suku dan .
Langkah 9.1.3.4
Tambahkan dan .
Langkah 9.1.3.5
Tambahkan dan .
Langkah 10
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 10.5
Sederhanakan jawabannya.
Langkah 10.5.1
Tulis kembali sebagai .
Langkah 10.5.2
Sederhanakan.
Langkah 10.5.2.1
Gabungkan dan .
Langkah 10.5.2.2
Hapus faktor persekutuan dari dan .
Langkah 10.5.2.2.1
Faktorkan dari .
Langkah 10.5.2.2.2
Batalkan faktor persekutuan.
Langkah 10.5.2.2.2.1
Faktorkan dari .
Langkah 10.5.2.2.2.2
Batalkan faktor persekutuan.
Langkah 10.5.2.2.2.3
Tulis kembali pernyataannya.
Langkah 10.5.2.2.2.4
Bagilah dengan .
Langkah 11
Substitusikan dalam .