Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)=(y^2+1)/(xy+y)
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Faktorkan dari .
Langkah 1.1.2
Naikkan menjadi pangkat .
Langkah 1.1.3
Faktorkan dari .
Langkah 1.1.4
Faktorkan dari .
Langkah 1.2
Kelompokkan kembali faktor.
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Kalikan dengan .
Langkah 1.4.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Batalkan faktor persekutuan.
Langkah 1.4.2.2
Tulis kembali pernyataannya.
Langkah 1.4.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.3.1
Batalkan faktor persekutuan.
Langkah 1.4.3.2
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.5
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Kalikan dengan .
Langkah 2.2.2.2
Pindahkan ke sebelah kiri .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Integral dari terhadap adalah .
Langkah 2.2.5
Sederhanakan.
Langkah 2.2.6
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.1
Diferensialkan .
Langkah 2.3.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.5
Tambahkan dan .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Integral dari terhadap adalah .
Langkah 2.3.3
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Terapkan sifat distributif.
Langkah 3.3
Pindahkan semua suku yang mengandung logaritma ke sisi kiri dari persamaan.
Langkah 3.4
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1.1.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 3.4.1.1.2
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 3.4.1.2
Gunakan sifat hasil bagi dari logaritma, .
Langkah 3.5
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.6
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.7
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.7.2
Kalikan kedua ruas dengan .
Langkah 3.7.3
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.3.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.3.1.1
Batalkan faktor persekutuan.
Langkah 3.7.3.1.2
Tulis kembali pernyataannya.
Langkah 3.7.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.4.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.4.1.1
Tulis kembali sebagai .
Langkah 3.7.4.1.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.4.1.2.1
Terapkan sifat distributif.
Langkah 3.7.4.1.2.2
Terapkan sifat distributif.
Langkah 3.7.4.1.2.3
Terapkan sifat distributif.
Langkah 3.7.4.1.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.4.1.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.4.1.3.1.1
Kalikan dengan .
Langkah 3.7.4.1.3.1.2
Kalikan dengan .
Langkah 3.7.4.1.3.1.3
Kalikan dengan .
Langkah 3.7.4.1.3.1.4
Kalikan dengan .
Langkah 3.7.4.1.3.2
Tambahkan dan .
Langkah 3.7.4.1.4
Terapkan sifat distributif.
Langkah 3.7.4.1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.4.1.5.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 3.7.4.1.5.2
Kalikan dengan .
Langkah 3.7.4.1.6
Susun kembali faktor-faktor dalam .
Langkah 3.7.4.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.7.4.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.7.4.4
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 4
Sederhanakan konstanta dari integral.