Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)=y/x+6x+1
Langkah 1
Tulis kembali persamaan diferensial sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2
Faktorkan dari .
Langkah 1.3
Susun kembali dan .
Langkah 2
Faktor integrasi didefinisikan dengan rumus , di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat integralnya.
Langkah 2.2
Integralkan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.2.3
Sederhanakan.
Langkah 2.3
Hapus konstanta dari integral.
Langkah 2.4
Gunakan kaidah pangkat logaritma.
Langkah 2.5
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 2.6
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 3
Kalikan setiap suku dengan faktor integrasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kalikan setiap suku dengan .
Langkah 3.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Gabungkan dan .
Langkah 3.2.2
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 3.2.3
Gabungkan dan .
Langkah 3.2.4
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.4.1
Kalikan dengan .
Langkah 3.2.4.2
Naikkan menjadi pangkat .
Langkah 3.2.4.3
Naikkan menjadi pangkat .
Langkah 3.2.4.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.2.4.5
Tambahkan dan .
Langkah 3.3
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 3.3.2
Gabungkan dan .
Langkah 3.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.3.1
Batalkan faktor persekutuan.
Langkah 3.3.3.2
Tulis kembali pernyataannya.
Langkah 3.3.4
Kalikan dengan .
Langkah 4
Tulis kembali sisi kiri sebagai hasil dari diferensiasi perkalian.
Langkah 5
Tulis integral untuk kedua ruas.
Langkah 6
Integralkan sisi kiri.
Langkah 7
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 7.2
Terapkan aturan konstanta.
Langkah 7.3
Integral dari terhadap adalah .
Langkah 7.4
Sederhanakan.
Langkah 8
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Gabungkan dan .
Langkah 8.2
Kalikan kedua ruas dengan .
Langkah 8.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1.1.1
Batalkan faktor persekutuan.
Langkah 8.3.1.1.2
Tulis kembali pernyataannya.
Langkah 8.3.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1.1
Terapkan sifat distributif.
Langkah 8.3.2.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1.2.1
Pindahkan .
Langkah 8.3.2.1.2.2
Kalikan dengan .
Langkah 8.3.2.1.3
Susun kembali faktor-faktor dalam .
Langkah 8.3.2.1.4
Pindahkan .