Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kalikan kedua ruas dengan .
Langkah 1.2
Batalkan faktor persekutuan dari .
Langkah 1.2.1
Batalkan faktor persekutuan.
Langkah 1.2.2
Tulis kembali pernyataannya.
Langkah 1.3
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.1.1
Biarkan . Tentukan .
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Diferensialkan.
Langkah 2.2.1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Evaluasi .
Langkah 2.2.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.3.3
Kalikan dengan .
Langkah 2.2.1.1.4
Kurangi dengan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2.2.2
Kalikan dengan .
Langkah 2.2.2.3
Pindahkan ke sebelah kiri .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.5
Integral dari terhadap adalah .
Langkah 2.2.6
Sederhanakan.
Langkah 2.2.6.1
Tulis kembali sebagai .
Langkah 2.2.6.2
Kalikan dengan .
Langkah 2.2.7
Ganti semua kemunculan dengan .
Langkah 2.3
Terapkan aturan konstanta.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.1.1
Bagilah setiap suku di dengan .
Langkah 3.1.2
Sederhanakan sisi kirinya.
Langkah 3.1.2.1
Batalkan faktor persekutuan dari .
Langkah 3.1.2.1.1
Batalkan faktor persekutuan.
Langkah 3.1.2.1.2
Bagilah dengan .
Langkah 3.1.3
Sederhanakan sisi kanannya.
Langkah 3.1.3.1
Sederhanakan setiap suku.
Langkah 3.1.3.1.1
Pindahkan tanda negatif di depan pecahan.
Langkah 3.1.3.1.2
Kalikan dengan .
Langkah 3.1.3.1.3
Faktorkan dari .
Langkah 3.1.3.1.4
Pisahkan pecahan.
Langkah 3.1.3.1.5
Bagilah dengan .
Langkah 3.1.3.1.6
Bagilah dengan .
Langkah 3.1.3.1.7
Kalikan dengan .
Langkah 3.1.3.1.8
Pindahkan tanda negatif di depan pecahan.
Langkah 3.1.3.1.9
Kalikan dengan .
Langkah 3.1.3.1.10
Faktorkan dari .
Langkah 3.1.3.1.11
Pisahkan pecahan.
Langkah 3.1.3.1.12
Bagilah dengan .
Langkah 3.1.3.1.13
Bagilah dengan .
Langkah 3.1.3.1.14
Kalikan dengan .
Langkah 3.2
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.3
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.4
Selesaikan .
Langkah 3.4.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.4.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.4.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.4.4
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.4.4.1
Bagilah setiap suku di dengan .
Langkah 3.4.4.2
Sederhanakan sisi kirinya.
Langkah 3.4.4.2.1
Batalkan faktor persekutuan dari .
Langkah 3.4.4.2.1.1
Batalkan faktor persekutuan.
Langkah 3.4.4.2.1.2
Bagilah dengan .
Langkah 3.4.4.3
Sederhanakan sisi kanannya.
Langkah 3.4.4.3.1
Sederhanakan setiap suku.
Langkah 3.4.4.3.1.1
Sederhanakan .
Langkah 3.4.4.3.1.2
Kalikan dengan .
Langkah 3.4.4.3.1.3
Faktorkan dari .
Langkah 3.4.4.3.1.4
Pisahkan pecahan.
Langkah 3.4.4.3.1.5
Bagilah dengan .
Langkah 3.4.4.3.1.6
Bagilah dengan .
Langkah 3.4.4.3.1.7
Bagilah dengan .
Langkah 4
Langkah 4.1
Sederhanakan konstanta dari integral.
Langkah 4.2
Tulis kembali sebagai .
Langkah 4.3
Susun kembali dan .
Langkah 4.4
Gabungkan konstanta dengan plus atau minus.