Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Faktorkan dari .
Langkah 1.1.1
Faktorkan dari .
Langkah 1.1.2
Faktorkan dari .
Langkah 1.1.3
Faktorkan dari .
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.3.2
Gabungkan dan .
Langkah 1.3.3
Batalkan faktor persekutuan dari .
Langkah 1.3.3.1
Faktorkan dari .
Langkah 1.3.3.2
Batalkan faktor persekutuan.
Langkah 1.3.3.3
Tulis kembali pernyataannya.
Langkah 1.4
Hilangkan tanda kurung yang tidak perlu.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Gabungkan dan .
Langkah 2.2.2
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.2.1
Biarkan . Tentukan .
Langkah 2.2.2.1.1
Diferensialkan .
Langkah 2.2.2.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.1.5
Tambahkan dan .
Langkah 2.2.2.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.3
Sederhanakan.
Langkah 2.2.3.1
Kalikan dengan .
Langkah 2.2.3.2
Pindahkan ke sebelah kiri .
Langkah 2.2.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.5
Integral dari terhadap adalah .
Langkah 2.2.6
Sederhanakan.
Langkah 2.2.7
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan jawabannya.
Langkah 2.3.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2
Gabungkan dan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Gabungkan dan .
Langkah 3.2.2.1.2
Terapkan sifat distributif.
Langkah 3.2.2.1.3
Kalikan .
Langkah 3.2.2.1.3.1
Gabungkan dan .
Langkah 3.2.2.1.3.2
Kalikan dengan .
Langkah 3.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.5
Selesaikan .
Langkah 3.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.5.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.5.3
Tambahkan ke kedua sisi persamaan.
Langkah 3.5.4
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 4
Langkah 4.1
Sederhanakan konstanta dari integral.
Langkah 4.2
Tulis kembali sebagai .
Langkah 4.3
Susun kembali dan .
Langkah 4.4
Gabungkan konstanta dengan plus atau minus.