Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.6
Kalikan dengan .
Langkah 1.3.7
Kalikan dengan .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Tambahkan dan .
Langkah 1.4.2
Susun kembali suku-suku.
Langkah 1.4.3
Susun kembali faktor-faktor dalam .
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Kalikan dengan .
Langkah 2.3
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.4
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.4.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.4.3
Ganti semua kemunculan dengan .
Langkah 2.5
Diferensialkan.
Langkah 2.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5.3
Kalikan dengan .
Langkah 2.5.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5.5
Kalikan dengan .
Langkah 2.6
Sederhanakan.
Langkah 2.6.1
Susun kembali suku-suku.
Langkah 2.6.2
Susun kembali faktor-faktor dalam .
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Langkah 5.1
Kalikan dengan .
Langkah 5.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.3
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 5.3.1
Biarkan . Tentukan .
Langkah 5.3.1.1
Diferensialkan .
Langkah 5.3.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.3.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.3.1.4
Kalikan dengan .
Langkah 5.3.2
Tulis kembali soalnya menggunakan dan .
Langkah 5.4
Gabungkan dan .
Langkah 5.5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.6
Sederhanakan.
Langkah 5.6.1
Gabungkan dan .
Langkah 5.6.2
Batalkan faktor persekutuan dari .
Langkah 5.6.2.1
Batalkan faktor persekutuan.
Langkah 5.6.2.2
Tulis kembali pernyataannya.
Langkah 5.7
Integral dari terhadap adalah .
Langkah 5.8
Sederhanakan.
Langkah 5.9
Ganti semua kemunculan dengan .
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 8.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 8.3.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 8.3.2.3
Ganti semua kemunculan dengan .
Langkah 8.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.5
Kalikan dengan .
Langkah 8.3.6
Gabungkan dan .
Langkah 8.3.7
Gabungkan dan .
Langkah 8.3.8
Gabungkan dan .
Langkah 8.3.9
Batalkan faktor persekutuan dari .
Langkah 8.3.9.1
Batalkan faktor persekutuan.
Langkah 8.3.9.2
Bagilah dengan .
Langkah 8.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.5
Sederhanakan.
Langkah 8.5.1
Susun kembali suku-suku.
Langkah 8.5.2
Susun kembali faktor-faktor dalam .
Langkah 9
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 9.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.2
Gabungkan suku balikan dalam .
Langkah 9.1.2.1
Kurangi dengan .
Langkah 9.1.2.2
Tambahkan dan .
Langkah 10
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 11
Substitusikan dalam .
Langkah 12
Langkah 12.1
Gabungkan dan .
Langkah 12.2
Gabungkan dan .