Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Selesaikan .
Langkah 1.1.1
Sederhanakan setiap suku.
Langkah 1.1.1.1
Gabungkan dan .
Langkah 1.1.1.2
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Gabungkan.
Langkah 1.3.2
Batalkan faktor persekutuan dari .
Langkah 1.3.2.1
Batalkan faktor persekutuan.
Langkah 1.3.2.2
Tulis kembali pernyataannya.
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Terapkan aturan-aturan dasar eksponen.
Langkah 2.3.2.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 2.3.2.2
Kalikan eksponen dalam .
Langkah 2.3.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.2.2.2
Kalikan dengan .
Langkah 2.3.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.4
Sederhanakan jawabannya.
Langkah 2.3.4.1
Tulis kembali sebagai .
Langkah 2.3.4.2
Sederhanakan.
Langkah 2.3.4.2.1
Kalikan dengan .
Langkah 2.3.4.2.2
Gabungkan dan .
Langkah 2.3.4.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.2
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.3
Selesaikan .
Langkah 3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.3.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 4
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Susun kembali dan .
Langkah 4.3
Gabungkan konstanta dengan plus atau minus.