Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 1.1.1
Bagilah setiap suku di dengan .
Langkah 1.1.2
Sederhanakan sisi kirinya.
Langkah 1.1.2.1
Batalkan faktor persekutuan dari .
Langkah 1.1.2.1.1
Batalkan faktor persekutuan.
Langkah 1.1.2.1.2
Bagilah dengan .
Langkah 1.2
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Terapkan aturan konstanta.
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Bagilah dengan .
Langkah 2.3.1.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+ | + |
Langkah 2.3.1.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | + |
Langkah 2.3.1.3
Kalikan suku hasil bagi baru dengan pembagi.
+ | + | ||||||
+ | + |
Langkah 2.3.1.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | + | ||||||
- | - |
Langkah 2.3.1.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | + | ||||||
- | - | ||||||
- |
Langkah 2.3.1.6
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 2.3.2
Bagi integral tunggal menjadi beberapa integral.
Langkah 2.3.3
Terapkan aturan konstanta.
Langkah 2.3.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.5
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Langkah 2.3.5.1
Biarkan . Tentukan .
Langkah 2.3.5.1.1
Diferensialkan .
Langkah 2.3.5.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.5.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.5.1.5
Tambahkan dan .
Langkah 2.3.5.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.6
Integral dari terhadap adalah .
Langkah 2.3.7
Sederhanakan.
Langkah 2.3.8
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .