Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Selesaikan .
Langkah 1.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.1.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.1.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.1.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.1.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 1.1.3.1
Bagilah setiap suku di dengan .
Langkah 1.1.3.2
Sederhanakan sisi kirinya.
Langkah 1.1.3.2.1
Batalkan faktor persekutuan dari .
Langkah 1.1.3.2.1.1
Batalkan faktor persekutuan.
Langkah 1.1.3.2.1.2
Bagilah dengan .
Langkah 1.1.3.3
Sederhanakan sisi kanannya.
Langkah 1.1.3.3.1
Sederhanakan setiap suku.
Langkah 1.1.3.3.1.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.1.3.3.1.2
Kalikan dengan .
Langkah 1.1.3.3.1.3
Pindahkan ke sebelah kiri .
Langkah 1.1.3.3.1.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.1.3.3.1.5
Batalkan faktor persekutuan dari .
Langkah 1.1.3.3.1.5.1
Faktorkan dari .
Langkah 1.1.3.3.1.5.2
Batalkan faktor persekutuan.
Langkah 1.1.3.3.1.5.3
Tulis kembali pernyataannya.
Langkah 1.2
Faktorkan.
Langkah 1.2.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2.2
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Langkah 1.2.2.1
Kalikan dengan .
Langkah 1.2.2.2
Susun kembali faktor-faktor dari .
Langkah 1.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2.4
Pindahkan ke sebelah kiri .
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Batalkan faktor persekutuan dari .
Langkah 1.4.1
Faktorkan dari .
Langkah 1.4.2
Batalkan faktor persekutuan.
Langkah 1.4.3
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Bagi integral tunggal menjadi beberapa integral.
Langkah 2.3.3
Terapkan aturan konstanta.
Langkah 2.3.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.5
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.6
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Sederhanakan setiap suku.
Langkah 3.2.2.1.1.1
Terapkan sifat distributif.
Langkah 3.2.2.1.1.2
Gabungkan dan .
Langkah 3.2.2.1.1.3
Gabungkan dan .
Langkah 3.2.2.1.2
Terapkan sifat distributif.
Langkah 3.2.2.1.3
Sederhanakan.
Langkah 3.2.2.1.3.1
Batalkan faktor persekutuan dari .
Langkah 3.2.2.1.3.1.1
Batalkan faktor persekutuan.
Langkah 3.2.2.1.3.1.2
Tulis kembali pernyataannya.
Langkah 3.2.2.1.3.2
Batalkan faktor persekutuan dari .
Langkah 3.2.2.1.3.2.1
Batalkan faktor persekutuan.
Langkah 3.2.2.1.3.2.2
Tulis kembali pernyataannya.
Langkah 3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Sederhanakan konstanta dari integral.