Kalkulus Contoh

Selesaikan Persamaan Diferensial (2xy^2+1)dx+(2x^2y)dy=0
Langkah 1
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Kalikan dengan .
Langkah 2.4.2
Susun kembali faktor-faktor dari .
Langkah 3
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Tulis kembali sebagai .
Langkah 5.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Gabungkan dan .
Langkah 5.3.2.2
Gabungkan dan .
Langkah 5.3.2.3
Pindahkan ke sebelah kiri .
Langkah 5.3.2.4
Kalikan dengan .
Langkah 5.3.2.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.5.1
Batalkan faktor persekutuan.
Langkah 5.3.2.5.2
Bagilah dengan .
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.3
Pindahkan ke sebelah kiri .
Langkah 8.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.5
Susun kembali suku-suku.
Langkah 9
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.2.1
Susun kembali faktor-faktor dalam suku-suku dan .
Langkah 9.1.2.2
Kurangi dengan .
Langkah 9.1.2.3
Tambahkan dan .
Langkah 10
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Terapkan aturan konstanta.
Langkah 11
Substitusikan dalam .