Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kalikan kedua ruas dengan .
Langkah 1.2
Batalkan faktor persekutuan dari .
Langkah 1.2.1
Batalkan faktor persekutuan.
Langkah 1.2.2
Tulis kembali pernyataannya.
Langkah 1.3
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.1.1
Biarkan . Tentukan .
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Evaluasi .
Langkah 2.2.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.3.3
Kalikan dengan .
Langkah 2.2.1.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.2.1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.4.2
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Kalikan dengan .
Langkah 2.2.2.2
Pindahkan ke sebelah kiri .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Integral dari terhadap adalah .
Langkah 2.2.5
Sederhanakan.
Langkah 2.2.6
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.3.1.1
Biarkan . Tentukan .
Langkah 2.3.1.1.1
Diferensialkan .
Langkah 2.3.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.1.1.3
Evaluasi .
Langkah 2.3.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.1.3.3
Kalikan dengan .
Langkah 2.3.1.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.3.1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.4.2
Tambahkan dan .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Sederhanakan.
Langkah 2.3.2.1
Kalikan dengan .
Langkah 2.3.2.2
Pindahkan ke sebelah kiri .
Langkah 2.3.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.4
Integral dari terhadap adalah .
Langkah 2.3.5
Sederhanakan.
Langkah 2.3.6
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Gabungkan dan .
Langkah 3.2.2.1.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.2.2.1.3
Sederhanakan suku-suku.
Langkah 3.2.2.1.3.1
Gabungkan dan .
Langkah 3.2.2.1.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.2.2.1.3.3
Batalkan faktor persekutuan dari .
Langkah 3.2.2.1.3.3.1
Faktorkan dari .
Langkah 3.2.2.1.3.3.2
Batalkan faktor persekutuan.
Langkah 3.2.2.1.3.3.3
Tulis kembali pernyataannya.
Langkah 3.2.2.1.4
Pindahkan ke sebelah kiri .
Langkah 3.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.5
Selesaikan .
Langkah 3.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.5.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.5.3
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 3.5.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.5.3.2
Sederhanakan setiap suku.
Langkah 3.5.3.2.1
Pisahkan pecahan menjadi dua pecahan.
Langkah 3.5.3.2.2
Sederhanakan setiap suku.
Langkah 3.5.3.2.2.1
Tulis kembali sebagai .
Langkah 3.5.3.2.2.2
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 3.5.3.2.2.3
Hapus faktor persekutuan dari dan .
Langkah 3.5.3.2.2.3.1
Faktorkan dari .
Langkah 3.5.3.2.2.3.2
Batalkan faktor persekutuan.
Langkah 3.5.3.2.2.3.2.1
Faktorkan dari .
Langkah 3.5.3.2.2.3.2.2
Batalkan faktor persekutuan.
Langkah 3.5.3.2.2.3.2.3
Tulis kembali pernyataannya.
Langkah 3.5.3.2.2.3.2.4
Bagilah dengan .
Langkah 3.5.4
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.5.4.1
Bagilah setiap suku di dengan .
Langkah 3.5.4.2
Sederhanakan sisi kirinya.
Langkah 3.5.4.2.1
Batalkan faktor persekutuan dari .
Langkah 3.5.4.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.4.2.1.2
Bagilah dengan .
Langkah 3.5.4.3
Sederhanakan sisi kanannya.
Langkah 3.5.4.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 3.5.4.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4
Langkah 4.1
Sederhanakan konstanta dari integral.
Langkah 4.2
Tulis kembali sebagai .
Langkah 4.3
Susun kembali dan .
Langkah 4.4
Gabungkan konstanta dengan plus atau minus.