Kalkulus Contoh

Selesaikan Persamaan Diferensial (ydy)/(tdt)=e^(t^2)
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan .
Langkah 1.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Gabungkan dan .
Langkah 1.2.2
Kalikan kedua ruas dengan .
Langkah 1.2.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1.1.1
Batalkan faktor persekutuan.
Langkah 1.2.3.1.1.2
Tulis kembali pernyataannya.
Langkah 1.2.3.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.2.1
Susun kembali faktor-faktor dalam .
Langkah 1.2.4
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Bagilah setiap suku di dengan .
Langkah 1.2.4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.4.2.1.2
Bagilah dengan .
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Batalkan faktor persekutuan.
Langkah 1.4.2
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.1
Diferensialkan .
Langkah 2.3.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Gabungkan dan .
Langkah 2.3.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.4
Integral dari terhadap adalah .
Langkah 2.3.5
Sederhanakan.
Langkah 2.3.6
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1
Gabungkan dan .
Langkah 3.2.2.1.2
Terapkan sifat distributif.
Langkah 3.2.2.1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.3.1
Batalkan faktor persekutuan.
Langkah 3.2.2.1.3.2
Tulis kembali pernyataannya.
Langkah 3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Sederhanakan konstanta dari integral.