Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2
Faktorkan dari .
Langkah 1.2.1
Faktorkan dari .
Langkah 1.2.2
Faktorkan dari .
Langkah 1.2.3
Faktorkan dari .
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.4.2
Gabungkan dan .
Langkah 1.4.3
Batalkan faktor persekutuan dari .
Langkah 1.4.3.1
Faktorkan dari .
Langkah 1.4.3.2
Batalkan faktor persekutuan.
Langkah 1.4.3.3
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Langkah 2.2.1.1
Biarkan . Tentukan .
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.5
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan jawabannya.
Langkah 2.3.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2
Sederhanakan.
Langkah 2.3.3.2.1
Gabungkan dan .
Langkah 2.3.3.2.2
Batalkan faktor persekutuan dari .
Langkah 2.3.3.2.2.1
Batalkan faktor persekutuan.
Langkah 2.3.3.2.2.2
Tulis kembali pernyataannya.
Langkah 2.3.3.2.3
Kalikan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.2
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.3
Selesaikan .
Langkah 3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.3.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.3.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Susun kembali dan .
Langkah 4.3
Gabungkan konstanta dengan plus atau minus.