Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)-2xy-6x=0
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Faktorkan dari .
Langkah 1.2.2
Faktorkan dari .
Langkah 1.2.3
Faktorkan dari .
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.4.2
Gabungkan dan .
Langkah 1.4.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.3.1
Faktorkan dari .
Langkah 1.4.3.2
Batalkan faktor persekutuan.
Langkah 1.4.3.3
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.5
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.2.1
Gabungkan dan .
Langkah 2.3.3.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.2.2.1
Batalkan faktor persekutuan.
Langkah 2.3.3.2.2.2
Tulis kembali pernyataannya.
Langkah 2.3.3.2.3
Kalikan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.2
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.3.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.3.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Kelompokkan suku-suku konstanta bersamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Susun kembali dan .
Langkah 4.3
Gabungkan konstanta dengan plus atau minus.