Kalkulus Contoh

Selesaikan Persamaan Diferensial (dx)/(dy)(6x-2xy)=1
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Bagilah setiap suku di dengan .
Langkah 1.1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1.1
Batalkan faktor persekutuan.
Langkah 1.1.2.1.2
Bagilah dengan .
Langkah 1.1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.1.1
Faktorkan dari .
Langkah 1.1.3.1.1.2
Faktorkan dari .
Langkah 1.1.3.1.1.3
Faktorkan dari .
Langkah 1.1.3.1.2
Tulis kembali sebagai .
Langkah 1.2
Kelompokkan kembali faktor.
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Kalikan dengan .
Langkah 1.4.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Batalkan faktor persekutuan.
Langkah 1.4.2.2
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Tulis kembali sebagai .
Langkah 2.2.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.2.1
Gabungkan dan .
Langkah 2.2.3.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.2.2.1
Batalkan faktor persekutuan.
Langkah 2.2.3.2.2.2
Tulis kembali pernyataannya.
Langkah 2.2.3.2.3
Kalikan dengan .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.1
Tulis kembali.
Langkah 2.3.1.1.2
Bagilah dengan .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Pisahkan pecahan menjadi beberapa pecahan.
Langkah 2.3.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.4
Integral dari terhadap adalah .
Langkah 2.3.5
Sederhanakan.
Langkah 2.3.6
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.2
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.2.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.2.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.