Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dt)=(y^2+1)/(t+1)
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Kalikan kedua ruas dengan .
Langkah 1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Batalkan faktor persekutuan.
Langkah 1.2.2
Tulis kembali pernyataannya.
Langkah 1.3
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Susun kembali dan .
Langkah 2.2.1.2
Tulis kembali sebagai .
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.1
Diferensialkan .
Langkah 2.3.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.5
Tambahkan dan .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Integral dari terhadap adalah .
Langkah 2.3.3
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Ambil balikan arctangen dari kedua sisi persamaan untuk mengambil dari dalam arctangen.