Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kelompokkan kembali faktor.
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Gabungkan.
Langkah 1.3.2
Batalkan faktor persekutuan dari .
Langkah 1.3.2.1
Faktorkan dari .
Langkah 1.3.2.2
Batalkan faktor persekutuan.
Langkah 1.3.2.3
Tulis kembali pernyataannya.
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Langkah 2.2.1.1
Biarkan . Tentukan .
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.5
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.3.2.1
Biarkan . Tentukan .
Langkah 2.3.2.1.1
Diferensialkan .
Langkah 2.3.2.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.2.1.3
Evaluasi .
Langkah 2.3.2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.2.1.3.3
Kalikan dengan .
Langkah 2.3.2.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.3.2.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2.1.4.2
Tambahkan dan .
Langkah 2.3.2.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.3
Sederhanakan.
Langkah 2.3.3.1
Kalikan dengan .
Langkah 2.3.3.2
Pindahkan ke sebelah kiri .
Langkah 2.3.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.5
Sederhanakan pernyataannya.
Langkah 2.3.5.1
Sederhanakan.
Langkah 2.3.5.1.1
Gabungkan dan .
Langkah 2.3.5.1.2
Hapus faktor persekutuan dari dan .
Langkah 2.3.5.1.2.1
Faktorkan dari .
Langkah 2.3.5.1.2.2
Batalkan faktor persekutuan.
Langkah 2.3.5.1.2.2.1
Faktorkan dari .
Langkah 2.3.5.1.2.2.2
Batalkan faktor persekutuan.
Langkah 2.3.5.1.2.2.3
Tulis kembali pernyataannya.
Langkah 2.3.5.1.2.2.4
Bagilah dengan .
Langkah 2.3.5.2
Terapkan aturan-aturan dasar eksponen.
Langkah 2.3.5.2.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 2.3.5.2.2
Kalikan eksponen dalam .
Langkah 2.3.5.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.5.2.2.2
Kalikan dengan .
Langkah 2.3.6
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.7
Sederhanakan.
Langkah 2.3.7.1
Tulis kembali sebagai .
Langkah 2.3.7.2
Sederhanakan.
Langkah 2.3.7.2.1
Kalikan dengan .
Langkah 2.3.7.2.2
Gabungkan dan .
Langkah 2.3.7.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.8
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 3.2
Perluas sisi kirinya.
Langkah 3.2.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 3.2.2
Log alami dari adalah .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Sederhanakan sisi kanannya.
Langkah 3.3.1
Sederhanakan .
Langkah 3.3.1.1
Pisahkan pecahan menjadi dua pecahan.
Langkah 3.3.1.2
Sederhanakan setiap suku.
Langkah 3.3.1.2.1
Pisahkan pecahan menjadi dua pecahan.
Langkah 3.3.1.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 3.3.1.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 3.4
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Sederhanakan konstanta dari integral.