Kalkulus Contoh

Selesaikan Persamaan Diferensial x^2dy+2x(yd)x=0
Langkah 1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2
Kalikan kedua ruas dengan .
Langkah 3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Faktorkan dari .
Langkah 3.1.2
Batalkan faktor persekutuan.
Langkah 3.1.3
Tulis kembali pernyataannya.
Langkah 3.2
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 3.3
Gabungkan dan .
Langkah 3.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Faktorkan dari .
Langkah 3.4.2
Batalkan faktor persekutuan.
Langkah 3.4.3
Tulis kembali pernyataannya.
Langkah 3.5
Pindahkan tanda negatif di depan pecahan.
Langkah 4
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis integral untuk kedua ruas.
Langkah 4.2
Integral dari terhadap adalah .
Langkah 4.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4.3.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4.3.3
Kalikan dengan .
Langkah 4.3.4
Integral dari terhadap adalah .
Langkah 4.3.5
Sederhanakan.
Langkah 4.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Pindahkan semua suku yang mengandung logaritma ke sisi kiri dari persamaan.
Langkah 5.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 5.2.1.1.2
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 5.2.1.2
Gunakan sifat hasil kali dari logaritma, .
Langkah 5.2.1.3
Susun kembali faktor-faktor dalam .
Langkah 5.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 5.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 5.5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.5.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1
Bagilah setiap suku di dengan .
Langkah 5.5.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.5.2.2.1.2
Bagilah dengan .
Langkah 5.5.3
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 6
Kelompokkan suku-suku konstanta bersamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Sederhanakan konstanta dari integral.
Langkah 6.2
Gabungkan konstanta dengan plus atau minus.