Kalkulus Contoh

Selesaikan Persamaan Diferensial (2xe^y+e^x)dx+(x^2+1)e^ydy=0
Langkah 1
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Tambahkan dan .
Langkah 1.5.2
Susun kembali faktor-faktor dari .
Langkah 1.5.3
Susun kembali faktor-faktor dalam .
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Tambahkan dan .
Langkah 2.6.2
Pindahkan ke sebelah kiri .
Langkah 2.6.3
Susun kembali faktor-faktor dalam .
Langkah 3
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Integral dari terhadap adalah .
Langkah 5.3
Sederhanakan.
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.5
Tambahkan dan .
Langkah 8.3.6
Pindahkan ke sebelah kiri .
Langkah 8.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.5.1
Susun kembali suku-suku.
Langkah 8.5.2
Susun kembali faktor-faktor dalam .
Langkah 9
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.2.1
Kurangi dengan .
Langkah 9.1.2.2
Tambahkan dan .
Langkah 10
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Integral dari terhadap adalah .
Langkah 11
Substitusikan dalam .
Langkah 12
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Terapkan sifat distributif.
Langkah 12.2
Kalikan dengan .