Kalkulus Contoh

Selesaikan Persamaan Diferensial (xy^2+y)dx+(x^2y+x)dy=0
Langkah 1
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Pindahkan ke sebelah kiri .
Langkah 1.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Pindahkan ke sebelah kiri .
Langkah 2.4
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.2
Susun kembali suku-suku.
Langkah 3
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 5.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.4
Terapkan aturan konstanta.
Langkah 5.5
Gabungkan dan .
Langkah 5.6
Sederhanakan.
Langkah 5.7
Susun kembali suku-suku.
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Gabungkan dan .
Langkah 8.3.2
Gabungkan dan .
Langkah 8.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.5
Gabungkan dan .
Langkah 8.3.6
Gabungkan dan .
Langkah 8.3.7
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.3.7.1
Batalkan faktor persekutuan.
Langkah 8.3.7.2
Bagilah dengan .
Langkah 8.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 8.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.4.3
Kalikan dengan .
Langkah 8.5
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.6
Susun kembali suku-suku.
Langkah 9
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.3
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.3.1
Kurangi dengan .
Langkah 9.1.3.2
Tambahkan dan .
Langkah 9.1.3.3
Kurangi dengan .
Langkah 10
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Integral dari terhadap adalah .
Langkah 10.4
Tambahkan dan .
Langkah 11
Substitusikan dalam .
Langkah 12
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Gabungkan dan .
Langkah 12.2
Gabungkan dan .