Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)=(3x+2)^-2
Langkah 1
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Terapkan aturan konstanta.
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.1
Diferensialkan .
Langkah 2.3.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.1.3.3
Kalikan dengan .
Langkah 2.3.1.1.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.4.2
Tambahkan dan .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Gabungkan dan .
Langkah 2.3.2.2
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.3.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.4
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.4.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 2.3.4.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.4.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.4.2.2
Kalikan dengan .
Langkah 2.3.5
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.6.1
Tulis kembali sebagai .
Langkah 2.3.6.2
Kalikan dengan .
Langkah 2.3.7
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .