Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)=(2xy)/((x^2-2)(y^2+3))
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Kelompokkan kembali faktor.
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Kalikan dengan .
Langkah 1.3.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Faktorkan dari .
Langkah 1.3.2.2
Batalkan faktor persekutuan.
Langkah 1.3.2.3
Tulis kembali pernyataannya.
Langkah 1.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Faktorkan dari .
Langkah 1.3.3.2
Batalkan faktor persekutuan.
Langkah 1.3.3.3
Tulis kembali pernyataannya.
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Pisahkan pecahan menjadi beberapa pecahan.
Langkah 2.2.2
Bagi integral tunggal menjadi beberapa integral.
Langkah 2.2.3
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Faktorkan dari .
Langkah 2.2.3.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.2.1
Naikkan menjadi pangkat .
Langkah 2.2.3.2.2
Faktorkan dari .
Langkah 2.2.3.2.3
Batalkan faktor persekutuan.
Langkah 2.2.3.2.4
Tulis kembali pernyataannya.
Langkah 2.2.3.2.5
Bagilah dengan .
Langkah 2.2.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.2.5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.6
Integral dari terhadap adalah .
Langkah 2.2.7
Sederhanakan.
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1.1
Diferensialkan .
Langkah 2.3.2.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.2.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.2.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2.1.5
Tambahkan dan .
Langkah 2.3.2.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Kalikan dengan .
Langkah 2.3.3.2
Pindahkan ke sebelah kiri .
Langkah 2.3.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.5.1
Gabungkan dan .
Langkah 2.3.5.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.5.2.1
Batalkan faktor persekutuan.
Langkah 2.3.5.2.2
Tulis kembali pernyataannya.
Langkah 2.3.5.3
Kalikan dengan .
Langkah 2.3.6
Integral dari terhadap adalah .
Langkah 2.3.7
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .