Kalkulus Contoh

Selesaikan Persamaan Diferensial (x^2+1)(dy)/(dx)+4xy=x
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Terapkan sifat distributif.
Langkah 1.1.1.2
Kalikan dengan .
Langkah 1.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.1.3
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Faktorkan dari .
Langkah 1.1.3.2
Naikkan menjadi pangkat .
Langkah 1.1.3.3
Faktorkan dari .
Langkah 1.1.3.4
Faktorkan dari .
Langkah 1.1.4
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Bagilah setiap suku di dengan .
Langkah 1.1.4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.1.1
Batalkan faktor persekutuan.
Langkah 1.1.4.2.1.2
Bagilah dengan .
Langkah 1.1.4.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.4.3.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.2.1
Naikkan menjadi pangkat .
Langkah 1.1.4.3.2.2
Faktorkan dari .
Langkah 1.1.4.3.2.3
Faktorkan dari .
Langkah 1.1.4.3.2.4
Faktorkan dari .
Langkah 1.2
Kelompokkan kembali faktor.
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Faktorkan dari .
Langkah 1.4.2
Batalkan faktor persekutuan.
Langkah 1.4.3
Tulis kembali pernyataannya.
Langkah 1.5
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.3.3
Kalikan dengan .
Langkah 2.2.1.1.4
Kurangi dengan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2.2.2
Kalikan dengan .
Langkah 2.2.2.3
Pindahkan ke sebelah kiri .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.5
Integral dari terhadap adalah .
Langkah 2.2.6
Sederhanakan.
Langkah 2.2.7
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1.1
Diferensialkan .
Langkah 2.3.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.1.1.5
Tambahkan dan .
Langkah 2.3.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Kalikan dengan .
Langkah 2.3.2.2
Pindahkan ke sebelah kiri .
Langkah 2.3.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.4
Integral dari terhadap adalah .
Langkah 2.3.5
Sederhanakan.
Langkah 2.3.6
Ganti semua kemunculan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.2.1.1.2.2
Faktorkan dari .
Langkah 3.2.1.1.2.3
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.4
Tulis kembali pernyataannya.
Langkah 3.2.1.1.3
Kalikan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.3.1
Kalikan dengan .
Langkah 3.2.1.1.3.2
Kalikan dengan .
Langkah 3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1
Gabungkan dan .
Langkah 3.2.2.1.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.2.2.1.3
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.3.1
Gabungkan dan .
Langkah 3.2.2.1.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.2.2.1.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.3.3.1
Faktorkan dari .
Langkah 3.2.2.1.3.3.2
Batalkan faktor persekutuan.
Langkah 3.2.2.1.3.3.3
Tulis kembali pernyataannya.
Langkah 3.2.2.1.4
Pindahkan ke sebelah kiri .
Langkah 3.2.2.1.5
Sederhanakan dengan mengalikan semuanya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.5.1
Terapkan sifat distributif.
Langkah 3.2.2.1.5.2
Kalikan dengan .
Langkah 3.3
Pindahkan semua suku yang mengandung logaritma ke sisi kiri dari persamaan.
Langkah 3.4
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1.1.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 3.4.1.1.2
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 3.4.1.2
Gunakan sifat hasil kali dari logaritma, .
Langkah 3.5
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.6
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.7
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.7.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.2.1
Bagilah setiap suku di dengan .
Langkah 3.7.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.7.2.2.1.2
Bagilah dengan .
Langkah 3.7.3
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.7.4
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.7.5
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.5.1
Bagilah setiap suku di dengan .
Langkah 3.7.5.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.5.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.5.2.1.1
Batalkan faktor persekutuan.
Langkah 3.7.5.2.1.2
Bagilah dengan .
Langkah 3.7.5.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.5.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.5.3.1.1
Sederhanakan .
Langkah 3.7.5.3.1.2
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.7.5.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4
Kelompokkan suku-suku konstanta bersamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Sederhanakan konstanta dari integral.
Langkah 4.2
Gabungkan konstanta dengan plus atau minus.