Kalkulus Contoh

Selesaikan Persamaan Diferensial y''''=xy+x-2y-2 para y(0)=1
para
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 1.1.1.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 1.1.2
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Batalkan faktor persekutuan.
Langkah 1.3.2
Tulis kembali pernyataannya.
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.5
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Integral dari terhadap adalah .
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Terapkan aturan konstanta.
Langkah 2.3.4
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.2
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.3.2
Gabungkan dan .
Langkah 3.3.3
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.3.4
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Kelompokkan suku-suku konstanta bersamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Susun kembali dan .
Langkah 4.3
Gabungkan konstanta dengan plus atau minus.
Langkah 5
Gunakan kondisi sarat untuk menemukan nilai dengan mensubstitusikan untuk dan untuk padda .
Langkah 6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Tulis kembali persamaan tersebut sebagai .
Langkah 6.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.2.1.2
Bagilah dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Tambahkan dan .
Langkah 6.2.3
Apa pun yang dinaikkan ke adalah .
Langkah 6.2.4
Kalikan dengan .
Langkah 6.3
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.1
Tambahkan ke kedua sisi persamaan.
Langkah 6.3.2
Tambahkan dan .
Langkah 7
Substitusikan untuk dalam dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Substitusikan untuk .