Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kalikan kedua ruas dengan .
Langkah 1.2
Sederhanakan.
Langkah 1.2.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.2.2
Batalkan faktor persekutuan dari .
Langkah 1.2.2.1
Faktorkan dari .
Langkah 1.2.2.2
Batalkan faktor persekutuan.
Langkah 1.2.2.3
Tulis kembali pernyataannya.
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan jawabannya.
Langkah 2.3.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2
Sederhanakan.
Langkah 2.3.3.2.1
Gabungkan dan .
Langkah 2.3.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Sederhanakan setiap suku.
Langkah 3.2.2.1.1.1
Gabungkan dan .
Langkah 3.2.2.1.1.2
Pindahkan ke sebelah kiri .
Langkah 3.2.2.1.2
Sederhanakan suku-suku.
Langkah 3.2.2.1.2.1
Terapkan sifat distributif.
Langkah 3.2.2.1.2.2
Batalkan faktor persekutuan dari .
Langkah 3.2.2.1.2.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.2.2.1.2.2.2
Batalkan faktor persekutuan.
Langkah 3.2.2.1.2.2.3
Tulis kembali pernyataannya.
Langkah 3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Sederhanakan konstanta dari integral.