Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tulis kembali.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Diferensialkan.
Langkah 2.4.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.3
Tambahkan dan .
Langkah 3
Langkah 3.1
Diferensialkan terhadap .
Langkah 3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4
Langkah 4.1
Substitusikan ke dan ke .
Langkah 4.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 5
Langkah 5.1
Substitusikan untuk .
Langkah 5.2
Substitusikan untuk .
Langkah 5.3
Substitusikan untuk .
Langkah 5.3.1
Substitusikan untuk .
Langkah 5.3.2
Sederhanakan pembilangnya.
Langkah 5.3.2.1
Kurangi dengan .
Langkah 5.3.2.2
Tambahkan dan .
Langkah 5.3.3
Batalkan faktor persekutuan dari .
Langkah 5.3.3.1
Batalkan faktor persekutuan.
Langkah 5.3.3.2
Tulis kembali pernyataannya.
Langkah 5.4
Temukan faktor integral .
Langkah 6
Langkah 6.1
Terapkan aturan konstanta.
Langkah 6.2
Sederhanakan.
Langkah 7
Langkah 7.1
Kalikan dengan .
Langkah 7.2
Terapkan sifat distributif.
Langkah 7.3
Tulis kembali sebagai .
Langkah 7.4
Kalikan dengan .
Langkah 8
Atur agar sama dengan integral .
Langkah 9
Langkah 9.1
Terapkan aturan konstanta.
Langkah 10
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 11
Atur .
Langkah 12
Langkah 12.1
Diferensialkan terhadap .
Langkah 12.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 12.3
Evaluasi .
Langkah 12.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 12.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 12.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 12.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 12.3.5
Kalikan dengan .
Langkah 12.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 12.5
Sederhanakan.
Langkah 12.5.1
Terapkan sifat distributif.
Langkah 12.5.2
Susun kembali suku-suku.
Langkah 12.5.3
Susun kembali faktor-faktor dalam .
Langkah 13
Langkah 13.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 13.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 13.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 13.1.3
Gabungkan suku balikan dalam .
Langkah 13.1.3.1
Kurangi dengan .
Langkah 13.1.3.2
Tambahkan dan .
Langkah 13.1.3.3
Kurangi dengan .
Langkah 13.1.3.4
Kurangi dengan .
Langkah 14
Langkah 14.1
Integralkan kedua sisi .
Langkah 14.2
Evaluasi .
Langkah 14.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 14.4
Integral dari terhadap adalah .
Langkah 14.5
Sederhanakan.
Langkah 15
Substitusikan dalam .
Langkah 16
Susun kembali faktor-faktor dalam .