Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tulis kembali.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Tambahkan dan .
Langkah 3
Langkah 3.1
Diferensialkan terhadap .
Langkah 3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4
Langkah 4.1
Substitusikan ke dan ke .
Langkah 4.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 5
Langkah 5.1
Substitusikan untuk .
Langkah 5.2
Substitusikan untuk .
Langkah 5.3
Substitusikan untuk .
Langkah 5.3.1
Substitusikan untuk .
Langkah 5.3.2
Sederhanakan pembilangnya.
Langkah 5.3.2.1
Faktorkan dari .
Langkah 5.3.2.1.1
Naikkan menjadi pangkat .
Langkah 5.3.2.1.2
Faktorkan dari .
Langkah 5.3.2.1.3
Faktorkan dari .
Langkah 5.3.2.1.4
Faktorkan dari .
Langkah 5.3.2.2
Kalikan dengan .
Langkah 5.3.2.3
Kurangi dengan .
Langkah 5.3.3
Hapus faktor persekutuan dari dan .
Langkah 5.3.3.1
Faktorkan dari .
Langkah 5.3.3.2
Batalkan faktor persekutuan.
Langkah 5.3.3.2.1
Faktorkan dari .
Langkah 5.3.3.2.2
Batalkan faktor persekutuan.
Langkah 5.3.3.2.3
Tulis kembali pernyataannya.
Langkah 5.3.4
Pindahkan tanda negatif di depan pecahan.
Langkah 5.4
Temukan faktor integral .
Langkah 6
Langkah 6.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6.2
Integral dari terhadap adalah .
Langkah 6.3
Sederhanakan.
Langkah 6.4
Sederhanakan setiap suku.
Langkah 6.4.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 6.4.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 6.4.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 7
Langkah 7.1
Kalikan dengan .
Langkah 7.2
Kalikan dengan .
Langkah 7.3
Faktorkan dari .
Langkah 7.3.1
Faktorkan dari .
Langkah 7.3.2
Faktorkan dari .
Langkah 7.3.3
Faktorkan dari .
Langkah 7.4
Batalkan faktor persekutuan dari .
Langkah 7.4.1
Batalkan faktor persekutuan.
Langkah 7.4.2
Bagilah dengan .
Langkah 7.5
Kalikan dengan .
Langkah 7.6
Batalkan faktor persekutuan dari .
Langkah 7.6.1
Faktorkan dari .
Langkah 7.6.2
Batalkan faktor persekutuan.
Langkah 7.6.3
Tulis kembali pernyataannya.
Langkah 8
Atur agar sama dengan integral .
Langkah 9
Langkah 9.1
Terapkan aturan konstanta.
Langkah 10
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 11
Atur .
Langkah 12
Langkah 12.1
Diferensialkan terhadap .
Langkah 12.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 12.3
Evaluasi .
Langkah 12.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 12.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 12.3.3
Kalikan dengan .
Langkah 12.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 12.5
Susun kembali suku-suku.
Langkah 13
Langkah 13.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 13.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 13.1.2
Gabungkan suku balikan dalam .
Langkah 13.1.2.1
Kurangi dengan .
Langkah 13.1.2.2
Tambahkan dan .
Langkah 14
Langkah 14.1
Integralkan kedua sisi .
Langkah 14.2
Evaluasi .
Langkah 14.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 15
Substitusikan dalam .
Langkah 16
Gabungkan dan .