Kalkulus Contoh

Selesaikan Persamaan Diferensial xcos(y)^2dx+tan(y)dy=0
Langkah 1
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Ganti semua kemunculan dengan .
Langkah 1.4
Pindahkan ke sebelah kiri .
Langkah 1.5
Turunan dari terhadap adalah .
Langkah 1.6
Kalikan dengan .
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 4
Temukan faktor integral .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Substitusikan untuk .
Langkah 4.2
Substitusikan untuk .
Langkah 4.3
Substitusikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Substitusikan untuk .
Langkah 4.3.2
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Kalikan dengan .
Langkah 4.3.2.2
Susun kembali dan .
Langkah 4.3.2.3
Tambahkan tanda kurung.
Langkah 4.3.2.4
Tambahkan tanda kurung.
Langkah 4.3.2.5
Susun kembali dan .
Langkah 4.3.2.6
Susun kembali dan .
Langkah 4.3.2.7
Terapkan identitas sudut ganda sinus.
Langkah 4.3.2.8
Tambahkan dan .
Langkah 4.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.3.1
Batalkan faktor persekutuan.
Langkah 4.3.3.2
Tulis kembali pernyataannya.
Langkah 4.3.4
Terapkan identitas sudut ganda sinus.
Langkah 4.3.5
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.5.1
Faktorkan dari .
Langkah 4.3.5.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.5.2.1
Faktorkan dari .
Langkah 4.3.5.2.2
Batalkan faktor persekutuan.
Langkah 4.3.5.2.3
Tulis kembali pernyataannya.
Langkah 4.3.6
Pisahkan pecahan.
Langkah 4.3.7
Konversikan dari ke .
Langkah 4.3.8
Substitusikan untuk .
Langkah 4.4
Temukan faktor integral .
Langkah 5
Evaluasi integral .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Integral dari terhadap adalah .
Langkah 5.3
Sederhanakan.
Langkah 5.4
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 5.4.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 5.4.3
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 6
Kalikan kedua sisi dengan faktor integral .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 6.3
Terapkan kaidah hasil kali ke .
Langkah 6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Faktorkan dari .
Langkah 6.4.2
Batalkan faktor persekutuan.
Langkah 6.4.3
Tulis kembali pernyataannya.
Langkah 6.5
Satu dipangkat berapa pun sama dengan satu.
Langkah 6.6
Kalikan dengan .
Langkah 6.7
Kalikan dengan .
Langkah 7
Atur agar sama dengan integral .
Langkah 8
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 9
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 10
Atur .
Langkah 11
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Diferensialkan terhadap .
Langkah 11.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 11.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 11.5
Tambahkan dan .
Langkah 12
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Integralkan kedua sisi .
Langkah 12.2
Evaluasi .
Langkah 12.3
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 12.3.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 12.3.1.1
Diferensialkan .
Langkah 12.3.1.2
Turunan dari terhadap adalah .
Langkah 12.3.2
Tulis kembali soalnya menggunakan dan .
Langkah 12.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 12.5
Ganti semua kemunculan dengan .
Langkah 13
Substitusikan dalam .
Langkah 14
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 14.1
Gabungkan dan .
Langkah 14.2
Gabungkan dan .