Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Faktorkan dari .
Langkah 1.3.1.1
Faktorkan dari .
Langkah 1.3.1.2
Faktorkan dari .
Langkah 1.3.1.3
Faktorkan dari .
Langkah 1.3.2
Kalikan dengan .
Langkah 1.3.3
Hapus faktor persekutuan dari dan .
Langkah 1.3.3.1
Faktorkan dari .
Langkah 1.3.3.2
Faktorkan dari .
Langkah 1.3.3.3
Faktorkan dari .
Langkah 1.3.3.4
Batalkan faktor persekutuan.
Langkah 1.3.3.4.1
Batalkan faktor persekutuan.
Langkah 1.3.3.4.2
Tulis kembali pernyataannya.
Langkah 1.3.4
Batalkan faktor persekutuan dari .
Langkah 1.3.4.1
Batalkan faktor persekutuan.
Langkah 1.3.4.2
Tulis kembali pernyataannya.
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.1.1
Biarkan . Tentukan .
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Evaluasi .
Langkah 2.2.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.3.3
Kalikan dengan .
Langkah 2.2.1.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.2.1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.4.2
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2.2.2
Kalikan dengan .
Langkah 2.2.2.3
Pindahkan ke sebelah kiri .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.5
Integral dari terhadap adalah .
Langkah 2.2.6
Sederhanakan.
Langkah 2.2.7
Ganti semua kemunculan dengan .
Langkah 2.3
Terapkan aturan konstanta.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.2.1.1.2.2
Faktorkan dari .
Langkah 3.2.1.1.2.3
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.4
Tulis kembali pernyataannya.
Langkah 3.2.1.1.3
Kalikan.
Langkah 3.2.1.1.3.1
Kalikan dengan .
Langkah 3.2.1.1.3.2
Kalikan dengan .
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Terapkan sifat distributif.
Langkah 3.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.5
Selesaikan .
Langkah 3.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.5.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.5.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.5.4
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.5.4.1
Bagilah setiap suku di dengan .
Langkah 3.5.4.2
Sederhanakan sisi kirinya.
Langkah 3.5.4.2.1
Batalkan faktor persekutuan dari .
Langkah 3.5.4.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.4.2.1.2
Bagilah dengan .
Langkah 3.5.4.3
Sederhanakan sisi kanannya.
Langkah 3.5.4.3.1
Sederhanakan setiap suku.
Langkah 3.5.4.3.1.1
Sederhanakan .
Langkah 3.5.4.3.1.2
Bagilah dengan .
Langkah 3.5.4.3.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.5.4.3.3
Gabungkan dan .
Langkah 3.5.4.3.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.5.4.3.5
Kalikan dengan .
Langkah 4
Langkah 4.1
Sederhanakan konstanta dari integral.
Langkah 4.2
Tulis kembali sebagai .
Langkah 4.3
Susun kembali dan .
Langkah 4.4
Gabungkan konstanta dengan plus atau minus.