Kalkulus Contoh

Selesaikan Persamaan Diferensial (2dy)/(dx)=(y(x+1))/x
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Faktorkan .
Langkah 1.2
Kelompokkan kembali faktor.
Langkah 1.3
Kalikan kedua ruas dengan .
Langkah 1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Batalkan faktor persekutuan.
Langkah 1.4.2
Tulis kembali pernyataannya.
Langkah 1.5
Hilangkan tanda kurung yang tidak perlu.
Langkah 1.6
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Gabungkan dan .
Langkah 2.2.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.3
Integral dari terhadap adalah .
Langkah 2.2.4
Sederhanakan.
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Pisahkan pecahan menjadi beberapa pecahan.
Langkah 2.3.2
Bagi integral tunggal menjadi beberapa integral.
Langkah 2.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Batalkan faktor persekutuan.
Langkah 2.3.3.2
Tulis kembali pernyataannya.
Langkah 2.3.4
Terapkan aturan konstanta.
Langkah 2.3.5
Integral dari terhadap adalah .
Langkah 2.3.6
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Pindahkan semua suku yang mengandung logaritma ke sisi kiri dari persamaan.
Langkah 3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 3.2.1.1.2
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 3.2.1.2
Gunakan sifat hasil bagi dari logaritma, .
Langkah 3.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.5.2
Kalikan kedua ruas dengan .
Langkah 3.5.3
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.3.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.3.1.1
Batalkan faktor persekutuan.
Langkah 3.5.3.1.2
Tulis kembali pernyataannya.
Langkah 3.5.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.4.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.5.4.2
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.4.2.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.5.4.2.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.5.4.2.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Kelompokkan suku-suku konstanta bersamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Susun kembali dan .
Langkah 4.3
Tulis kembali sebagai .
Langkah 4.4
Susun kembali dan .