Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Kalikan kedua ruas dengan .
Langkah 1.2
Sederhanakan.
Langkah 1.2.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.2.2
Gabungkan dan .
Langkah 1.2.3
Batalkan faktor persekutuan dari .
Langkah 1.2.3.1
Faktorkan dari .
Langkah 1.2.3.2
Batalkan faktor persekutuan.
Langkah 1.2.3.3
Tulis kembali pernyataannya.
Langkah 1.3
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Sederhanakan pernyataannya.
Langkah 2.2.1.1
Tiadakan eksponen dari dan pindahkan dari penyebut.
Langkah 2.2.1.2
Sederhanakan.
Langkah 2.2.1.2.1
Kalikan eksponen dalam .
Langkah 2.2.1.2.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.1.2.1.2
Pindahkan ke sebelah kiri .
Langkah 2.2.1.2.1.3
Tulis kembali sebagai .
Langkah 2.2.1.2.2
Kalikan dengan .
Langkah 2.2.2
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.2.1
Biarkan . Tentukan .
Langkah 2.2.2.1.1
Diferensialkan .
Langkah 2.2.2.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2.1.4
Kalikan dengan .
Langkah 2.2.2.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Integral dari terhadap adalah .
Langkah 2.2.5
Sederhanakan.
Langkah 2.2.6
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan jawabannya.
Langkah 2.3.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2
Gabungkan dan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.1.1
Bagilah setiap suku di dengan .
Langkah 3.1.2
Sederhanakan sisi kirinya.
Langkah 3.1.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.1.2.2
Bagilah dengan .
Langkah 3.1.3
Sederhanakan sisi kanannya.
Langkah 3.1.3.1
Sederhanakan setiap suku.
Langkah 3.1.3.1.1
Pindahkan tanda negatif dari penyebut .
Langkah 3.1.3.1.2
Tulis kembali sebagai .
Langkah 3.1.3.1.3
Gabungkan dan .
Langkah 3.1.3.1.4
Pindahkan tanda negatif dari penyebut .
Langkah 3.1.3.1.5
Tulis kembali sebagai .
Langkah 3.2
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 3.3
Perluas sisi kirinya.
Langkah 3.3.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 3.3.2
Log alami dari adalah .
Langkah 3.3.3
Kalikan dengan .
Langkah 3.4
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.4.1
Bagilah setiap suku di dengan .
Langkah 3.4.2
Sederhanakan sisi kirinya.
Langkah 3.4.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 3.4.2.2
Bagilah dengan .
Langkah 3.4.3
Sederhanakan sisi kanannya.
Langkah 3.4.3.1
Pindahkan tanda negatif dari penyebut .
Langkah 3.4.3.2
Tulis kembali sebagai .
Langkah 4
Sederhanakan konstanta dari integral.
Langkah 5
Gunakan kondisi sarat untuk menemukan nilai dengan mensubstitusikan untuk dan untuk padda .
Langkah 6
Langkah 6.1
Tulis kembali persamaan tersebut sebagai .
Langkah 6.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 6.2.1
Bagilah setiap suku di dengan .
Langkah 6.2.2
Sederhanakan sisi kirinya.
Langkah 6.2.2.1
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Langkah 6.2.2.1.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 6.2.2.1.2
Bagilah dengan .
Langkah 6.2.2.2
Sederhanakan setiap suku.
Langkah 6.2.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.2.2.2.2
Kalikan dengan .
Langkah 6.2.2.2.3
Bagilah dengan .
Langkah 6.2.2.2.4
Kalikan dengan .
Langkah 6.2.2.3
Tambahkan dan .
Langkah 6.2.3
Sederhanakan sisi kanannya.
Langkah 6.2.3.1
Bagilah dengan .
Langkah 6.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 6.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 6.5
Selesaikan .
Langkah 6.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 6.5.2
Apa pun yang dinaikkan ke adalah .
Langkah 7
Langkah 7.1
Substitusikan untuk .