Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5
Tambahkan dan .
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 4
Langkah 4.1
Substitusikan untuk .
Langkah 4.2
Substitusikan untuk .
Langkah 4.3
Substitusikan untuk .
Langkah 4.3.1
Substitusikan untuk .
Langkah 4.3.2
Tambahkan dan .
Langkah 4.3.3
Batalkan faktor persekutuan dari .
Langkah 4.3.3.1
Batalkan faktor persekutuan.
Langkah 4.3.3.2
Tulis kembali pernyataannya.
Langkah 4.4
Temukan faktor integral .
Langkah 5
Langkah 5.1
Terapkan aturan konstanta.
Langkah 5.2
Sederhanakan.
Langkah 6
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Terapkan sifat distributif.
Langkah 6.3
Kalikan dengan .
Langkah 6.4
Terapkan sifat distributif.
Langkah 7
Atur agar sama dengan integral .
Langkah 8
Langkah 8.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 8.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 8.4
Terapkan aturan konstanta.
Langkah 8.5
Gabungkan dan .
Langkah 8.6
Sederhanakan.
Langkah 9
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 10
Atur .
Langkah 11
Langkah 11.1
Diferensialkan terhadap .
Langkah 11.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 11.3
Evaluasi .
Langkah 11.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 11.4
Evaluasi .
Langkah 11.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.4.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 11.5
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 11.6
Sederhanakan.
Langkah 11.6.1
Susun kembali suku-suku.
Langkah 11.6.2
Susun kembali faktor-faktor dalam .
Langkah 12
Langkah 12.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 12.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 12.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 12.1.3
Gabungkan suku balikan dalam .
Langkah 12.1.3.1
Kurangi dengan .
Langkah 12.1.3.2
Tambahkan dan .
Langkah 12.1.3.3
Tambahkan dan .
Langkah 12.1.3.4
Tambahkan dan .
Langkah 13
Langkah 13.1
Integralkan kedua sisi .
Langkah 13.2
Evaluasi .
Langkah 13.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 13.4
Integralkan bagian demi bagian menggunakan rumus , di mana dan .
Langkah 13.5
Integral dari terhadap adalah .
Langkah 13.6
Sederhanakan.
Langkah 14
Substitusikan dalam .
Langkah 15
Langkah 15.1
Sederhanakan setiap suku.
Langkah 15.1.1
Terapkan sifat distributif.
Langkah 15.1.2
Kalikan .
Langkah 15.1.2.1
Kalikan dengan .
Langkah 15.1.2.2
Kalikan dengan .
Langkah 15.2
Susun kembali faktor-faktor dalam .