Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kelompokkan kembali faktor.
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.3.2
Kalikan dengan .
Langkah 1.3.3
Batalkan faktor persekutuan dari .
Langkah 1.3.3.1
Faktorkan dari .
Langkah 1.3.3.2
Faktorkan dari .
Langkah 1.3.3.3
Batalkan faktor persekutuan.
Langkah 1.3.3.4
Tulis kembali pernyataannya.
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.3
Integral dari terhadap adalah .
Langkah 2.3.4
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Gabungkan dan .
Langkah 3.2.2.1.2
Terapkan sifat distributif.
Langkah 3.2.2.1.3
Kalikan .
Langkah 3.2.2.1.3.1
Kalikan dengan .
Langkah 3.2.2.1.3.2
Gabungkan dan .
Langkah 3.2.2.1.4
Pindahkan tanda negatif di depan pecahan.
Langkah 3.3
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 3.4
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.5
Sederhanakan .
Langkah 3.5.1
Tulis kembali sebagai .
Langkah 3.5.2
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 3.5.3
Kalikan eksponen dalam .
Langkah 3.5.3.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.5.3.2
Gabungkan dan .
Langkah 3.6
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.6.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.6.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.6.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Sederhanakan konstanta dari integral.