Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.1.2
Turunan dari terhadap adalah .
Langkah 1.3.1.3
Ganti semua kemunculan dengan .
Langkah 1.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.4
Kalikan dengan .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.4
Evaluasi .
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.3
Kalikan dengan .
Langkah 1.5
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Diferensialkan.
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Evaluasi .
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Kalikan dengan .
Langkah 2.5
Sederhanakan.
Langkah 2.5.1
Kurangi dengan .
Langkah 2.5.2
Susun kembali suku-suku.
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Langkah 5.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 5.2
Terapkan aturan konstanta.
Langkah 5.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.5
Sederhanakan.
Langkah 5.6
Sederhanakan.
Langkah 5.6.1
Gabungkan dan .
Langkah 5.6.2
Hapus faktor persekutuan dari dan .
Langkah 5.6.2.1
Faktorkan dari .
Langkah 5.6.2.2
Batalkan faktor persekutuan.
Langkah 5.6.2.2.1
Faktorkan dari .
Langkah 5.6.2.2.2
Batalkan faktor persekutuan.
Langkah 5.6.2.2.3
Tulis kembali pernyataannya.
Langkah 5.6.2.2.4
Bagilah dengan .
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 8.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 8.3.2.2
Turunan dari terhadap adalah .
Langkah 8.3.2.3
Ganti semua kemunculan dengan .
Langkah 8.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.5
Kalikan dengan .
Langkah 8.3.6
Kalikan dengan .
Langkah 8.4
Evaluasi .
Langkah 8.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.4.3
Kalikan dengan .
Langkah 8.5
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.6
Susun kembali suku-suku.
Langkah 9
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 9.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 9.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 9.1.3
Gabungkan suku balikan dalam .
Langkah 9.1.3.1
Tambahkan dan .
Langkah 9.1.3.2
Tambahkan dan .
Langkah 9.1.3.3
Tambahkan dan .
Langkah 9.1.3.4
Tambahkan dan .
Langkah 10
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 10.3.1
Biarkan . Tentukan .
Langkah 10.3.1.1
Diferensialkan .
Langkah 10.3.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 10.3.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 10.3.1.4
Kalikan dengan .
Langkah 10.3.2
Tulis kembali soalnya menggunakan dan .
Langkah 10.4
Gabungkan dan .
Langkah 10.5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10.6
Integral dari terhadap adalah .
Langkah 10.7
Sederhanakan.
Langkah 10.8
Ganti semua kemunculan dengan .
Langkah 11
Substitusikan dalam .
Langkah 12
Langkah 12.1
Gabungkan dan .
Langkah 12.2
Susun kembali faktor-faktor dalam .