Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Pindahkan ke sebelah kiri .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Tambahkan dan .
Langkah 1.4.2
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Pindahkan ke sebelah kiri .
Langkah 2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5
Evaluasi .
Langkah 2.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5.3
Kalikan dengan .
Langkah 2.6
Sederhanakan.
Langkah 2.6.1
Tambahkan dan .
Langkah 2.6.2
Susun kembali suku-suku.
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Langkah 5.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 5.2
Terapkan aturan konstanta.
Langkah 5.3
Terapkan aturan konstanta.
Langkah 5.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.5
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 5.6
Gabungkan dan .
Langkah 5.7
Sederhanakan.
Langkah 5.8
Susun kembali suku-suku.
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Diferensialkan.
Langkah 8.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.3.3
Pindahkan ke sebelah kiri .
Langkah 8.4
Evaluasi .
Langkah 8.4.1
Gabungkan dan .
Langkah 8.4.2
Gabungkan dan .
Langkah 8.4.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.4.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.4.5
Gabungkan dan .
Langkah 8.4.6
Gabungkan dan .
Langkah 8.4.7
Batalkan faktor persekutuan dari .
Langkah 8.4.7.1
Batalkan faktor persekutuan.
Langkah 8.4.7.2
Bagilah dengan .
Langkah 8.5
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.6
Sederhanakan.
Langkah 8.6.1
Tambahkan dan .
Langkah 8.6.2
Susun kembali suku-suku.
Langkah 9
Langkah 9.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 9.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.3
Gabungkan suku balikan dalam .
Langkah 9.1.3.1
Kurangi dengan .
Langkah 9.1.3.2
Tambahkan dan .
Langkah 9.1.3.3
Kurangi dengan .
Langkah 9.1.3.4
Tambahkan dan .
Langkah 10
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 11
Substitusikan dalam .
Langkah 12
Langkah 12.1
Sederhanakan setiap suku.
Langkah 12.1.1
Gabungkan dan .
Langkah 12.1.2
Gabungkan dan .
Langkah 12.1.3
Gabungkan dan .
Langkah 12.2
Tambahkan dan .
Langkah 12.2.1
Susun kembali dan .
Langkah 12.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 12.2.3
Gabungkan dan .
Langkah 12.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 12.3
Sederhanakan pembilangnya.
Langkah 12.3.1
Faktorkan dari .
Langkah 12.3.1.1
Faktorkan dari .
Langkah 12.3.1.2
Kalikan dengan .
Langkah 12.3.1.3
Faktorkan dari .
Langkah 12.3.2
Pindahkan ke sebelah kiri .
Langkah 12.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 12.5
Gabungkan dan .
Langkah 12.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 12.7
Sederhanakan pembilangnya.
Langkah 12.7.1
Pindahkan ke sebelah kiri .
Langkah 12.7.2
Terapkan sifat distributif.
Langkah 12.7.3
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 12.7.4
Kalikan dengan .
Langkah 12.8
Gabungkan pembilang dari penyebut persekutuan.