Kalkulus Contoh

Selesaikan Persamaan Diferensial (2x^2y+2x)(dy)/(dx)+2xy^2+2y=0
Langkah 1
Pisahkan variabelnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Terapkan sifat distributif.
Langkah 1.1.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.1.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.1.3
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Faktorkan dari .
Langkah 1.1.3.2
Faktorkan dari .
Langkah 1.1.3.3
Faktorkan dari .
Langkah 1.1.4
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Bagilah setiap suku di dengan .
Langkah 1.1.4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.1.1
Batalkan faktor persekutuan.
Langkah 1.1.4.2.1.2
Tulis kembali pernyataannya.
Langkah 1.1.4.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.2.1
Batalkan faktor persekutuan.
Langkah 1.1.4.2.2.2
Tulis kembali pernyataannya.
Langkah 1.1.4.2.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.2.3.1
Batalkan faktor persekutuan.
Langkah 1.1.4.2.3.2
Bagilah dengan .
Langkah 1.1.4.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1.1.1
Faktorkan dari .
Langkah 1.1.4.3.1.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1.1.2.1
Faktorkan dari .
Langkah 1.1.4.3.1.1.2.2
Batalkan faktor persekutuan.
Langkah 1.1.4.3.1.1.2.3
Tulis kembali pernyataannya.
Langkah 1.1.4.3.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1.2.1
Batalkan faktor persekutuan.
Langkah 1.1.4.3.1.2.2
Tulis kembali pernyataannya.
Langkah 1.1.4.3.1.3
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.4.3.1.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1.4.1
Faktorkan dari .
Langkah 1.1.4.3.1.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.1.4.2.1
Faktorkan dari .
Langkah 1.1.4.3.1.4.2.2
Batalkan faktor persekutuan.
Langkah 1.1.4.3.1.4.2.3
Tulis kembali pernyataannya.
Langkah 1.1.4.3.1.5
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.4.3.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.1.4.3.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.3.1
Kalikan dengan .
Langkah 1.1.4.3.3.2
Susun kembali faktor-faktor dari .
Langkah 1.1.4.3.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.4.3.5
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.5.1
Faktorkan dari .
Langkah 1.1.4.3.5.2
Faktorkan dari .
Langkah 1.1.4.3.5.3
Faktorkan dari .
Langkah 1.1.4.3.6
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.6.1
Faktorkan dari .
Langkah 1.1.4.3.6.2
Tulis kembali sebagai .
Langkah 1.1.4.3.6.3
Faktorkan dari .
Langkah 1.1.4.3.6.4
Tulis kembali sebagai .
Langkah 1.1.4.3.6.5
Susun kembali suku-suku.
Langkah 1.1.4.3.6.6
Batalkan faktor persekutuan.
Langkah 1.1.4.3.6.7
Tulis kembali pernyataannya.
Langkah 1.1.4.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.3.7.1
Pindahkan ke sebelah kiri .
Langkah 1.1.4.3.7.2
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.3.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 1.3.2.2
Batalkan faktor persekutuan.
Langkah 1.3.2.3
Tulis kembali pernyataannya.
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integral dari terhadap adalah .
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Pindahkan semua suku yang mengandung logaritma ke sisi kiri dari persamaan.
Langkah 3.2
Gunakan sifat hasil kali dari logaritma, .
Langkah 3.3
Untuk mengalikan nilai-nilai mutlak, kalikan suku-suku di dalam masing-masing nilai mutlaknya.
Langkah 3.4
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.5
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.6.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.6.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.1
Bagilah setiap suku di dengan .
Langkah 3.6.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.3.2.1.1
Batalkan faktor persekutuan.
Langkah 3.6.3.2.1.2
Bagilah dengan .
Langkah 4
Sederhanakan konstanta dari integral.