Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pindahkan limit ke bawah tanda akar.
Langkah 1.1.2.1.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.3
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.2.1.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Naikkan menjadi pangkat .
Langkah 1.1.2.3.2
Kalikan dengan .
Langkah 1.1.2.3.3
Kurangi dengan .
Langkah 1.1.2.3.4
Tulis kembali sebagai .
Langkah 1.1.2.3.5
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Evaluasi limitnya.
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Langkah 1.1.3.3.1
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3.3
Ganti semua kemunculan dengan .
Langkah 1.3.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3.5
Gabungkan dan .
Langkah 1.3.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.3.7
Sederhanakan pembilangnya.
Langkah 1.3.7.1
Kalikan dengan .
Langkah 1.3.7.2
Kurangi dengan .
Langkah 1.3.8
Pindahkan tanda negatif di depan pecahan.
Langkah 1.3.9
Gabungkan dan .
Langkah 1.3.10
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.3.11
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.12
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.13
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.14
Tambahkan dan .
Langkah 1.3.15
Gabungkan dan .
Langkah 1.3.16
Gabungkan dan .
Langkah 1.3.17
Batalkan faktor persekutuan.
Langkah 1.3.18
Tulis kembali pernyataannya.
Langkah 1.3.19
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.20
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.21
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.22
Tambahkan dan .
Langkah 1.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.5
Tulis kembali sebagai .
Langkah 1.6
Kalikan dengan .
Langkah 2
Karena pembilangnya positif dan penyebut mendekati nol dan lebih besar dari nol untuk mendekati ke kanan, fungsinya meningkat tanpa batas.