Masukkan soal...
Aljabar Contoh
Langkah 1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 3
Substitusikan akar-akar yang memungkinkan satu demi satu ke dalam polinomial untuk mencari akar-akar aktualnya. Sederhanakan untuk mengetahui apakah nilainya adalah , yang berarti merupakan akarnya.
Langkah 4
Langkah 4.1
Sederhanakan setiap suku.
Langkah 4.1.1
Terapkan kaidah hasil kali ke .
Langkah 4.1.2
Naikkan menjadi pangkat .
Langkah 4.1.3
Naikkan menjadi pangkat .
Langkah 4.1.4
Batalkan faktor persekutuan dari .
Langkah 4.1.4.1
Batalkan faktor persekutuan.
Langkah 4.1.4.2
Tulis kembali pernyataannya.
Langkah 4.2
Kurangi dengan .
Langkah 5
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menentukan akar yang tersisa.
Langkah 6
Langkah 6.1
Tempatkan bilangan yang mewakili pembagi dan bilangan yang dibagi ke dalam konfigurasi yang seperti pembagian.
Langkah 6.2
Bilangan pertama dalam bilangan yang dibagi dimasukkan ke dalam posisi pertama dari daerah hasil (di bawah garis datar).
Langkah 6.3
Kalikan entri terbaru dalam hasil dengan pembagi dan tempatkan hasil di bawah suku berikutnya dalam bilangan yang dibagi .
Langkah 6.4
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
Langkah 6.5
Kalikan entri terbaru dalam hasil dengan pembagi dan tempatkan hasil di bawah suku berikutnya dalam bilangan yang dibagi .
Langkah 6.6
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
Langkah 6.7
Semua bilangan, kecuali yang terakhir, menjadi koefisien dari polinomial hasil bagi. Nilai terakhir pada garis hasil adalah sisanya.
Langkah 6.8
Sederhanakan polinomial hasil baginya.
Langkah 7
Langkah 7.1
Faktorkan dari .
Langkah 7.2
Faktorkan dari .
Langkah 7.3
Faktorkan dari .
Langkah 8
Tambahkan ke kedua sisi persamaan.
Langkah 9
Langkah 9.1
Bagilah setiap suku di dengan .
Langkah 9.2
Sederhanakan sisi kirinya.
Langkah 9.2.1
Batalkan faktor persekutuan dari .
Langkah 9.2.1.1
Batalkan faktor persekutuan.
Langkah 9.2.1.2
Bagilah dengan .
Langkah 10
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 11
Langkah 11.1
Tulis kembali sebagai .
Langkah 11.2
Sederhanakan pembilangnya.
Langkah 11.2.1
Tulis kembali sebagai .
Langkah 11.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 11.3
Sederhanakan penyebutnya.
Langkah 11.3.1
Tulis kembali sebagai .
Langkah 11.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 12
Langkah 12.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 12.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 12.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 13