Masukkan soal...
Aljabar Contoh
Langkah 1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 3
Substitusikan akar-akar yang memungkinkan satu demi satu ke dalam polinomial untuk mencari akar-akar aktualnya. Sederhanakan untuk mengetahui apakah nilainya adalah , yang berarti merupakan akarnya.
Langkah 4
Langkah 4.1
Sederhanakan setiap suku.
Langkah 4.1.1
Naikkan menjadi pangkat .
Langkah 4.1.2
Naikkan menjadi pangkat .
Langkah 4.1.3
Kalikan dengan .
Langkah 4.1.4
Naikkan menjadi pangkat .
Langkah 4.1.5
Kalikan dengan .
Langkah 4.1.6
Kalikan dengan .
Langkah 4.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 4.2.1
Kurangi dengan .
Langkah 4.2.2
Kurangi dengan .
Langkah 4.2.3
Tambahkan dan .
Langkah 4.2.4
Kurangi dengan .
Langkah 5
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menentukan akar yang tersisa.
Langkah 6
Langkah 6.1
Tempatkan bilangan yang mewakili pembagi dan bilangan yang dibagi ke dalam konfigurasi yang seperti pembagian.
Langkah 6.2
Bilangan pertama dalam bilangan yang dibagi dimasukkan ke dalam posisi pertama dari daerah hasil (di bawah garis datar).
Langkah 6.3
Kalikan entri terbaru dalam hasil dengan pembagi dan tempatkan hasil di bawah suku berikutnya dalam bilangan yang dibagi .
Langkah 6.4
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
Langkah 6.5
Kalikan entri terbaru dalam hasil dengan pembagi dan tempatkan hasil di bawah suku berikutnya dalam bilangan yang dibagi .
Langkah 6.6
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
Langkah 6.7
Kalikan entri terbaru dalam hasil dengan pembagi dan tempatkan hasil di bawah suku berikutnya dalam bilangan yang dibagi .
Langkah 6.8
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
Langkah 6.9
Kalikan entri terbaru dalam hasil dengan pembagi dan tempatkan hasil di bawah suku berikutnya dalam bilangan yang dibagi .
Langkah 6.10
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
Langkah 6.11
Semua bilangan, kecuali yang terakhir, menjadi koefisien dari polinomial hasil bagi. Nilai terakhir pada garis hasil adalah sisanya.
Langkah 6.12
Sederhanakan polinomial hasil baginya.
Langkah 7
Langkah 7.1
Faktorkan sisi kiri persamaannya.
Langkah 7.1.1
Faktorkan menggunakan uji akar rasional.
Langkah 7.1.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 7.1.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 7.1.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Langkah 7.1.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 7.1.1.3.2
Naikkan menjadi pangkat .
Langkah 7.1.1.3.3
Naikkan menjadi pangkat .
Langkah 7.1.1.3.4
Kalikan dengan .
Langkah 7.1.1.3.5
Kurangi dengan .
Langkah 7.1.1.3.6
Kalikan dengan .
Langkah 7.1.1.3.7
Kurangi dengan .
Langkah 7.1.1.3.8
Tambahkan dan .
Langkah 7.1.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 7.1.1.5
Bagilah dengan .
Langkah 7.1.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
- | - | - | + |
Langkah 7.1.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | - | - | + |
Langkah 7.1.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
- | - | - | + | ||||||||
+ | - |
Langkah 7.1.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | - | - | + | ||||||||
- | + |
Langkah 7.1.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | - | - | + | ||||||||
- | + | ||||||||||
+ |
Langkah 7.1.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - |
Langkah 7.1.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - |
Langkah 7.1.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
+ | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Langkah 7.1.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Langkah 7.1.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- |
Langkah 7.1.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+ | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Langkah 7.1.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Langkah 7.1.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
+ | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Langkah 7.1.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Langkah 7.1.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
Langkah 7.1.1.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 7.1.1.6
Tulis sebagai himpunan faktor.
Langkah 7.1.2
Faktorkan menggunakan metode AC.
Langkah 7.1.2.1
Faktorkan menggunakan metode AC.
Langkah 7.1.2.1.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 7.1.2.1.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 7.1.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 7.1.3
Gabungkan faktor sejenis.
Langkah 7.1.3.1
Naikkan menjadi pangkat .
Langkah 7.1.3.2
Naikkan menjadi pangkat .
Langkah 7.1.3.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 7.1.3.4
Tambahkan dan .
Langkah 7.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 7.3
Atur agar sama dengan dan selesaikan .
Langkah 7.3.1
Atur sama dengan .
Langkah 7.3.2
Selesaikan untuk .
Langkah 7.3.2.1
Atur agar sama dengan .
Langkah 7.3.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 7.4
Atur agar sama dengan dan selesaikan .
Langkah 7.4.1
Atur sama dengan .
Langkah 7.4.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 7.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 8
Polinomial dapat ditulis sebagai himpunan faktor linear.
Langkah 9
Ini adalah akar-akar (nol) dari polinomial .
Langkah 10