Aljabar Contoh

Tentukan Inversnya y=2x^2+7
Langkah 1
Saling tukar variabel.
Langkah 2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis kembali persamaan tersebut sebagai .
Langkah 2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Bagilah setiap suku di dengan .
Langkah 2.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.1.2
Bagilah dengan .
Langkah 2.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.5
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.5.2
Tulis kembali sebagai .
Langkah 2.5.3
Kalikan dengan .
Langkah 2.5.4
Gabungkan dan sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.4.1
Kalikan dengan .
Langkah 2.5.4.2
Naikkan menjadi pangkat .
Langkah 2.5.4.3
Naikkan menjadi pangkat .
Langkah 2.5.4.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.5.4.5
Tambahkan dan .
Langkah 2.5.4.6
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.4.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.5.4.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.5.4.6.3
Gabungkan dan .
Langkah 2.5.4.6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.4.6.4.1
Batalkan faktor persekutuan.
Langkah 2.5.4.6.4.2
Tulis kembali pernyataannya.
Langkah 2.5.4.6.5
Evaluasi eksponennya.
Langkah 2.5.5
Gabungkan menggunakan kaidah hasil kali untuk akar.
Langkah 2.5.6
Susun kembali faktor-faktor dalam .
Langkah 2.6
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.6.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.6.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Replace with to show the final answer.
Langkah 4
Periksa apakah merupakan balikan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Domain dari balikan adalah daerah hasil dari fungsi asal dan sebaliknya. Tentukan domain dan daerah hasil dari dan dan bandingkan.
Langkah 4.2
Tentukan daerah hasil dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Jangkauannya adalah himpunan dari semua nilai yang valid. Gunakan grafik untuk mencari intervalnya.
Notasi Interval:
Langkah 4.3
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 4.3.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1.1
Bagilah setiap suku di dengan .
Langkah 4.3.2.1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1.2.1.1
Batalkan faktor persekutuan.
Langkah 4.3.2.1.2.1.2
Bagilah dengan .
Langkah 4.3.2.1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1.3.1
Bagilah dengan .
Langkah 4.3.2.2
Tambahkan pada kedua sisi pertidaksamaan tersebut.
Langkah 4.3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 4.4
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 4.5
Karena domain dari adalah daerah hasil dari dan daerah hasil dari adalah domain dari , maka merupakan balikan dari .
Langkah 5