Aljabar Contoh

Konversi menjadi Notasi Interval x^2-2x<=1
Langkah 1
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 2
Konversikan pertidaksamaan ke persamaan.
Langkah 3
Gunakan rumus kuadrat untuk menghitung penyelesaiannya.
Langkah 4
Substitusikan nilai-nilai , , dan ke dalam rumus kuadrat, lalu selesaikan .
Langkah 5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Naikkan menjadi pangkat .
Langkah 5.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.2.1
Kalikan dengan .
Langkah 5.1.2.2
Kalikan dengan .
Langkah 5.1.3
Tambahkan dan .
Langkah 5.1.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.4.1
Faktorkan dari .
Langkah 5.1.4.2
Tulis kembali sebagai .
Langkah 5.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 5.2
Kalikan dengan .
Langkah 5.3
Sederhanakan .
Langkah 6
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Naikkan menjadi pangkat .
Langkah 6.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1.2.1
Kalikan dengan .
Langkah 6.1.2.2
Kalikan dengan .
Langkah 6.1.3
Tambahkan dan .
Langkah 6.1.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 6.1.4.1
Faktorkan dari .
Langkah 6.1.4.2
Tulis kembali sebagai .
Langkah 6.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Sederhanakan .
Langkah 6.4
Ubah menjadi .
Langkah 7
Sederhanakan pernyataan untuk menyelesaikan bagian dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.1.1
Naikkan menjadi pangkat .
Langkah 7.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1.2.1
Kalikan dengan .
Langkah 7.1.2.2
Kalikan dengan .
Langkah 7.1.3
Tambahkan dan .
Langkah 7.1.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 7.1.4.1
Faktorkan dari .
Langkah 7.1.4.2
Tulis kembali sebagai .
Langkah 7.1.5
Mengeluarkan suku-suku dari bawah akar.
Langkah 7.2
Kalikan dengan .
Langkah 7.3
Sederhanakan .
Langkah 7.4
Ubah menjadi .
Langkah 8
Gabungkan penyelesaiannya.
Langkah 9
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 10
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 10.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 10.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 10.1.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 10.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 10.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 10.2.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 10.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 10.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 10.3.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 10.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Salah
Benar
Salah
Langkah 11
Penyelesaian tersebut terdiri dari semua interval hakiki.
Langkah 12
Konversikan pertidaksamaan ke notasi interval.
Langkah 13