Masukkan soal...
Aljabar Contoh
5x-4y=205x−4y=20
Langkah 1
Langkah 1.1
Kurangkan 5x5x dari kedua sisi persamaan tersebut.
-4y=20-5x−4y=20−5x
Langkah 1.2
Bagi setiap suku pada -4y=20-5x−4y=20−5x dengan -4−4 dan sederhanakan.
Langkah 1.2.1
Bagilah setiap suku di -4y=20-5x−4y=20−5x dengan -4−4.
-4y-4=20-4+-5x-4−4y−4=20−4+−5x−4
Langkah 1.2.2
Sederhanakan sisi kirinya.
Langkah 1.2.2.1
Batalkan faktor persekutuan dari -4−4.
Langkah 1.2.2.1.1
Batalkan faktor persekutuan.
-4y-4=20-4+-5x-4
Langkah 1.2.2.1.2
Bagilah y dengan 1.
y=20-4+-5x-4
y=20-4+-5x-4
y=20-4+-5x-4
Langkah 1.2.3
Sederhanakan sisi kanannya.
Langkah 1.2.3.1
Sederhanakan setiap suku.
Langkah 1.2.3.1.1
Bagilah 20 dengan -4.
y=-5+-5x-4
Langkah 1.2.3.1.2
Membagi dua nilai negatif menghasilkan nilai positif.
y=-5+5x4
y=-5+5x4
y=-5+5x4
y=-5+5x4
y=-5+5x4
Langkah 2
Langkah 2.1
Bentuk perpotongan kemiringan adalah y=mx+b, di mana m adalah gradiennya dan b adalah perpotongan sumbu y.
y=mx+b
Langkah 2.2
Susun kembali -5 dan 5x4.
y=5x4-5
Langkah 2.3
Susun kembali suku-suku.
y=54x-5
y=54x-5
Langkah 3
Langkah 3.1
Temukan nilai dari m dan b menggunakan bentuk y=mx+b.
m=54
b=-5
Langkah 3.2
Gradien garisnya adalah nilai dari m, dan perpotongan sumbu y adalah nilai dari b.
Gradien: 54
perpotongan sumbu y: (0,-5)
Gradien: 54
perpotongan sumbu y: (0,-5)
Langkah 4
Langkah 4.1
Tulis dalam bentuk y=mx+b.
Langkah 4.1.1
Susun kembali -5 dan 5x4.
y=5x4-5
Langkah 4.1.2
Susun kembali suku-suku.
y=54x-5
y=54x-5
Langkah 4.2
Buat tabel dari nilai x dan y.
xy0-540
xy0-540
Langkah 5
Gambarkan garis menggunakan gradien dan perpotongan sumbu y, atau titik-titiknya.
Gradien: 54
perpotongan sumbu y: (0,-5)
xy0-540
Langkah 6
