Aljabar Contoh

Selesaikan Pertidaksamaan untuk x x+4<5/x
Langkah 1
Kalikan kedua ruas dengan .
Langkah 2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1.1
Terapkan sifat distributif.
Langkah 2.1.1.2
Kalikan dengan .
Langkah 2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.2.1.2
Tulis kembali pernyataannya.
Langkah 3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.2
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 3.2.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 3.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Atur sama dengan .
Langkah 3.4.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4.2
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 5
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 6
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.1.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
Benar
Benar
Langkah 6.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.2.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 6.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
Benar
Benar
Langkah 6.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 6.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 6.4.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 6.5
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Benar
Salah
Benar
Salah
Benar
Salah
Benar
Salah
Langkah 7
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau
Langkah 8
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 9