Masukkan soal...
Aljabar Contoh
Langkah 1
Saling tukar variabel.
Langkah 2
Langkah 2.1
Tulis kembali persamaan tersebut sebagai .
Langkah 2.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.4.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.4.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.4.3.1
Bagilah setiap suku di dengan .
Langkah 2.4.3.2
Sederhanakan sisi kirinya.
Langkah 2.4.3.2.1
Batalkan faktor persekutuan dari .
Langkah 2.4.3.2.1.1
Batalkan faktor persekutuan.
Langkah 2.4.3.2.1.2
Bagilah dengan .
Langkah 2.4.4
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.4.5
Tambahkan ke kedua sisi persamaan.
Langkah 2.4.6
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.4.6.1
Bagilah setiap suku di dengan .
Langkah 2.4.6.2
Sederhanakan sisi kirinya.
Langkah 2.4.6.2.1
Batalkan faktor persekutuan dari .
Langkah 2.4.6.2.1.1
Batalkan faktor persekutuan.
Langkah 2.4.6.2.1.2
Bagilah dengan .
Langkah 2.4.6.3
Sederhanakan sisi kanannya.
Langkah 2.4.6.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.4.7
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Ganti dengan untuk memunculkan jawaban akhir.
Langkah 4
Langkah 4.1
Domain dari balikan adalah daerah hasil dari fungsi asal dan sebaliknya. Tentukan domain dan daerah hasil dari dan dan bandingkan.
Langkah 4.2
Tentukan daerah hasil dari .
Langkah 4.2.1
Jangkauannya adalah himpunan dari semua nilai yang valid. Gunakan grafik untuk mencari intervalnya.
Notasi Interval:
Langkah 4.3
Tentukan domain dari .
Langkah 4.3.1
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 4.3.2
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 4.3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Langkah 4.4
Tentukan domain dari .
Langkah 4.4.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 4.5
Karena domain dari adalah daerah hasil dari dan daerah hasil dari adalah domain dari , maka merupakan balikan dari .
Langkah 5