समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
,
चरण 1
चरण 1.1
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
और
चरण 1.2
दाईं ओर को सरल बनाएंं.
चरण 1.2.1
का सटीक मान है.
और
और
चरण 1.3
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
और
चरण 1.4
में से घटाएं.
और
चरण 1.5
का आवर्त ज्ञात करें.
चरण 1.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 1.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 1.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 1.5.4
को से विभाजित करें.
चरण 1.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
और
चरण 1.7
उत्तरों को समेकित करें.
और
चरण 1.8
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
और
चरण 1.9
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
चरण 1.9.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 1.9.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
और
चरण 1.9.1.2
मूल असमानता में को से बदलें.
और
चरण 1.9.1.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य और
सत्य और
चरण 1.9.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 1.9.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
और
चरण 1.9.2.2
मूल असमानता में को से बदलें.
और
चरण 1.9.2.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य और
असत्य और
चरण 1.9.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
सही
False and
सही
False and
चरण 1.10
हल में सभी सच्चे अंतराल होते हैं.
और
और
चरण 2
चरण 2.1
कोज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम कोज्या लें.
और
चरण 2.2
दाईं ओर को सरल बनाएंं.
चरण 2.2.1
का सटीक मान है.
और
और
चरण 2.3
पहले और चौथे चतुर्थांश में कोज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
और
चरण 2.4
को सरल करें.
चरण 2.4.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
और
चरण 2.4.2
न्यूमेरेटरों को जोड़ें.
चरण 2.4.2.1
और को मिलाएं.
और
चरण 2.4.2.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
और
और
चरण 2.4.3
न्यूमेरेटर को सरल करें.
चरण 2.4.3.1
को से गुणा करें.
और
चरण 2.4.3.2
में से घटाएं.
और
और
और
चरण 2.5
का आवर्त ज्ञात करें.
चरण 2.5.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 2.5.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 2.5.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 2.5.4
को से विभाजित करें.
चरण 2.6
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
और
चरण 2.7
उत्तरों को समेकित करें.
और
चरण 2.8
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
और
चरण 2.9
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
चरण 2.9.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 2.9.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
और
चरण 2.9.1.2
मूल असमानता में को से बदलें.
और
चरण 2.9.1.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
and True
and True
चरण 2.9.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 2.9.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
और
चरण 2.9.2.2
मूल असमानता में को से बदलें.
और
चरण 2.9.2.3
बाईं ओर दाईं ओर से कम नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
and False
and False
चरण 2.9.3
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
and True
गलत
and True
गलत
चरण 2.10
हल में सभी सच्चे अंतराल होते हैं.
और
और
चरण 3