ट्रिगोनोमेट्री उदाहरण

अधिकतम/न्यूनतम मान ज्ञात कीजिये। f(x)=4cos(x)
चरण 1
फलन का पहला व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 1.2
के संबंध में का व्युत्पन्न है.
चरण 1.3
को से गुणा करें.
चरण 2
फलन का दूसरा व्युत्पन्न पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2
के संबंध में का व्युत्पन्न है.
चरण 3
फलन के स्थानीय अधिकतम और न्यूनतम मान ज्ञात करने के लिए, व्युत्पन्न को के बराबर सेट करें और हल करें.
चरण 4
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
के प्रत्येक पद को से विभाजित करें.
चरण 4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.1.2
को से विभाजित करें.
चरण 4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
को से विभाजित करें.
चरण 5
ज्या के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम ज्या लें.
चरण 6
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 6.1
का सटीक मान है.
चरण 7
पहले और दूसरे चतुर्थांश में ज्या फलन धनात्मक होता है. दूसरा हल पता करने के लिए, दूसरे चतुर्थांश में हल पता करने के लिए संदर्भ कोण को से घटाएं.
चरण 8
में से घटाएं.
चरण 9
समीकरण का हल .
चरण 10
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 11
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
का सटीक मान है.
चरण 11.2
को से गुणा करें.
चरण 12
एक स्थानीय अधिकतम है क्योंकि दूसरे व्युत्पन्न का मान ऋणात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय अधिकतम है.
चरण 13
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 13.1
व्यंजक में चर को से बदलें.
चरण 13.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 13.2.1
का सटीक मान है.
चरण 13.2.2
को से गुणा करें.
चरण 13.2.3
अंतिम उत्तर है.
चरण 14
पर दूसरा व्युत्पन्न का मान ज्ञात करें. यदि दूसरा व्युत्पन्न सकारात्मक है, तो यह एक स्थानीय न्यूनतम है. यदि यह नकारात्मक है, तो यह एक स्थानीय अधिकतम है.
चरण 15
दूसरा व्युत्पन्न का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 15.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 15.2
का सटीक मान है.
चरण 15.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 15.3.1
को से गुणा करें.
चरण 15.3.2
को से गुणा करें.
चरण 16
एक स्थानीय न्यूनतम है क्योंकि दूसरे व्युत्पन्न का मान धनात्मक है. इसे दूसरे व्युत्पन्न परीक्षण के रूप में जाना जाता है.
एक स्थानीय न्यूनतम है.
चरण 17
होने पर y-मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 17.1
व्यंजक में चर को से बदलें.
चरण 17.2
परिणाम को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 17.2.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 17.2.2
का सटीक मान है.
चरण 17.2.3
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 17.2.3.1
को से गुणा करें.
चरण 17.2.3.2
को से गुणा करें.
चरण 17.2.4
अंतिम उत्तर है.
चरण 18
ये के लिए स्थानीय उच्चत्तम मान हैं.
एक स्थानीय उच्चत्तम है
एक स्थानीय निम्नत्तम है
चरण 19