समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
चरण 1.1
एक कोण की कोज्या कर्ण से आसन्न भुजा के अनुपात के बराबर होती है.
चरण 1.2
कोज्या फलन की परिभाषा में प्रत्येक पक्ष का नाम प्रतिस्थापित करें.
चरण 1.3
आसन्न पक्ष के लिए हल करने के लिए समीकरण सेट करें, इस स्थिति में .
चरण 1.4
प्रत्येक चर के मानों को कोज्या के सूत्र में प्रतिस्थापित करें.
चरण 1.5
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.1
में से का गुणनखंड करें.
चरण 1.5.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.5.3
व्यंजक को फिर से लिखें.
चरण 2
चरण 2.1
अज्ञात भुजा को पता करने के लिए पाइथागोरस प्रमेय का प्रयोग करें. किसी भी समकोण त्रिभुज में, जिस वर्ग की भुजा कर्ण (समकोण के विपरीत समकोण त्रिभुज की भुजा) होती है, उसका क्षेत्रफल उन वर्गों के क्षेत्रफलों के योग के बराबर होता है, जिनकी भुजाएँ कर्ण को छोड़कर अन्य दो भुजाएँ होती हैं (कर्ण के अलावे अन्य दो भुजाएँ).
चरण 2.2
के लिए समीकरण को हल करें.
चरण 2.3
समीकरण में वास्तविक मानों को प्रतिस्थापित करें.
चरण 2.4
व्यंजक को सरल बनाएंं.
चरण 2.4.1
को के घात तक बढ़ाएं.
चरण 2.4.2
उत्पाद नियम को पर लागू करें.
चरण 2.4.3
को के घात तक बढ़ाएं.
चरण 2.5
को के रूप में फिर से लिखें.
चरण 2.5.1
को के रूप में फिर से लिखने के लिए का उपयोग करें.
चरण 2.5.2
घात नियम लागू करें और घातांक गुणा करें, .
चरण 2.5.3
और को मिलाएं.
चरण 2.5.4
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.4.2
व्यंजक को फिर से लिखें.
चरण 2.5.5
घातांक का मान ज्ञात करें.
चरण 2.6
गुणा करें.
चरण 2.6.1
को से गुणा करें.
चरण 2.6.2
को से गुणा करें.
चरण 2.7
में से घटाएं.
चरण 2.8
को के रूप में फिर से लिखें.
चरण 2.9
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 3
ये दिए गए त्रिभुज के सभी कोणों और भुजाओं के परिणाम हैं.