समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
चरण 2.1
को के रूप में फिर से लिखें.
चरण 2.2
को के रूप में फिर से लिखें.
चरण 2.3
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 4
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
चरण 4.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 4.2.3
को सरल करें.
चरण 4.2.3.1
को के रूप में फिर से लिखें.
चरण 4.2.3.2
को के रूप में फिर से लिखें.
चरण 4.2.3.3
को के रूप में फिर से लिखें.
चरण 4.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 4.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 4.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 5
चरण 5.1
को के बराबर सेट करें.
चरण 5.2
के लिए हल करें.
चरण 5.2.1
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 5.2.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 5.2.3.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 5.2.3.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 5.2.3.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.