समस्या दर्ज करें...
ट्रिगोनोमेट्री उदाहरण
चरण 1
आयाम, अवधि, चरण बदलाव और ऊर्ध्वाधर बदलाव को पता करने के लिए प्रयोग किए जाने वाले चर को पता करने के लिए रूप का प्रयोग करें.
चरण 2
आयाम पता करें.
आयाम:
चरण 3
चरण 3.1
का आवर्त ज्ञात करें.
चरण 3.1.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 3.1.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 3.1.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 3.1.4
को सन्निकटन से बदलें.
चरण 3.1.5
को से गुणा करें.
चरण 3.1.6
को से विभाजित करें.
चरण 3.2
का आवर्त ज्ञात करें.
चरण 3.2.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 3.2.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 3.2.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 3.2.4
को सन्निकटन से बदलें.
चरण 3.2.5
को से गुणा करें.
चरण 3.2.6
को से विभाजित करें.
चरण 3.3
त्रिकोणमितीय फलन के जोड़/घटाव का आवर्त व्यक्तिगत आवर्तो की अधिकतम है.
चरण 4
चरण 4.1
फलन के चरण बदलाव की गणना से की जा सकती है.
चरण बदलाव:
चरण 4.2
चरण बदलाव के समीकरण में और के मान बदलें.
चरण बदलाव:
चरण 4.3
को से विभाजित करें.
चरण बदलाव:
चरण बदलाव:
चरण 5
त्रिकोणमितीय फलन के गुणों की सूची बनाइए.
आयाम:
आवर्त:
चरण बदलाव: ( बाईं ओर)
ऊर्ध्वाधर बदलाव:
चरण 6
चरण 6.1
पर बिंदु पता करें.
चरण 6.1.1
व्यंजक में चर को से बदलें.
चरण 6.1.2
परिणाम को सरल बनाएंं.
चरण 6.1.2.1
प्रत्येक पद को सरल करें.
चरण 6.1.2.1.1
को से गुणा करें.
चरण 6.1.2.1.2
और जोड़ें.
चरण 6.1.2.1.3
का सटीक मान है.
चरण 6.1.2.1.3.1
को एक कोण के रूप में फिर से लिखें जहां छह त्रिकोणमितीय फलनों के मान से विभाजित हों.
चरण 6.1.2.1.3.2
ज्या अर्ध-कोण सर्वसमिका लागू करें.
चरण 6.1.2.1.3.3
को में बदलें क्योंकि ज्या पहले चतुर्थांश में ज्या धनात्मक होती है.
चरण 6.1.2.1.3.4
को सरल करें.
चरण 6.1.2.1.3.4.1
का सटीक मान है.
चरण 6.1.2.1.3.4.2
को से गुणा करें.
चरण 6.1.2.1.3.4.3
में से घटाएं.
चरण 6.1.2.1.3.4.4
को से विभाजित करें.
चरण 6.1.2.1.3.4.5
को के रूप में फिर से लिखें.
चरण 6.1.2.1.3.4.6
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 6.1.2.1.4
को से गुणा करें.
चरण 6.1.2.2
में से घटाएं.
चरण 6.1.2.3
अंतिम उत्तर है.
चरण 6.2
पर बिंदु पता करें.
चरण 6.2.1
व्यंजक में चर को से बदलें.
चरण 6.2.2
परिणाम को सरल बनाएंं.
चरण 6.2.2.1
प्रत्येक पद को सरल करें.
चरण 6.2.2.1.1
को से गुणा करें.
चरण 6.2.2.1.2
और जोड़ें.
चरण 6.2.2.1.3
को से गुणा करें.
चरण 6.2.2.2
में से घटाएं.
चरण 6.2.2.3
अंतिम उत्तर है.
चरण 6.3
पर बिंदु पता करें.
चरण 6.3.1
व्यंजक में चर को से बदलें.
चरण 6.3.2
परिणाम को सरल बनाएंं.
चरण 6.3.2.1
प्रत्येक पद को सरल करें.
चरण 6.3.2.1.1
को से गुणा करें.
चरण 6.3.2.1.2
और जोड़ें.
चरण 6.3.2.1.3
को से गुणा करें.
चरण 6.3.2.2
में से घटाएं.
चरण 6.3.2.3
अंतिम उत्तर है.
चरण 6.4
पर बिंदु पता करें.
चरण 6.4.1
व्यंजक में चर को से बदलें.
चरण 6.4.2
परिणाम को सरल बनाएंं.
चरण 6.4.2.1
प्रत्येक पद को सरल करें.
चरण 6.4.2.1.1
को से गुणा करें.
चरण 6.4.2.1.2
और जोड़ें.
चरण 6.4.2.1.3
को से गुणा करें.
चरण 6.4.2.2
में से घटाएं.
चरण 6.4.2.3
अंतिम उत्तर है.
चरण 6.5
पर बिंदु पता करें.
चरण 6.5.1
व्यंजक में चर को से बदलें.
चरण 6.5.2
परिणाम को सरल बनाएंं.
चरण 6.5.2.1
प्रत्येक पद को सरल करें.
चरण 6.5.2.1.1
को से गुणा करें.
चरण 6.5.2.1.2
और जोड़ें.
चरण 6.5.2.1.3
को से गुणा करें.
चरण 6.5.2.2
में से घटाएं.
चरण 6.5.2.3
अंतिम उत्तर है.
चरण 6.6
एक तालिका में मुद्दों की सूची बनाएंं.
चरण 7
त्रिकोणमितीय फलन को आयाम, अवधि, चरण बदलाव, ऊर्ध्वाधर बदलाव और बिंदुओं का उपयोग करके ग्राफ किया जा सकता है.
आयाम:
आवर्त:
चरण बदलाव: ( बाईं ओर)
ऊर्ध्वाधर बदलाव:
चरण 8