ट्रिगोनोमेट्री उदाहरण

चरण 1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 1.1
ज्या और कोज्या के संदर्भ में फिर से लिखें, फिर सामान्य गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
कोष्ठक लगाएं.
चरण 1.1.2
ज्या और कोज्या के संदर्भ में को फिर से लिखें.
चरण 1.1.3
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 2
समीकरण के प्रत्येक पद को से विभाजित करें.
चरण 3
अलग-अलग भिन्न
चरण 4
को में बदलें.
चरण 5
को से विभाजित करें.
चरण 6
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 6.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.2
को से विभाजित करें.
चरण 7
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 7.1
के प्रत्येक पद को से विभाजित करें.
चरण 7.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 7.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 7.2.1.2
को से विभाजित करें.
चरण 8
स्पर्शरेखा के अंदर से निकालने के लिए समीकरण के दोनों पक्षों की व्युत्क्रम स्पर्शरेखा लें.
चरण 9
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 9.1
का मान ज्ञात करें.
चरण 10
पहले और तीसरे चतुर्थांश में स्पर्शरेखा फलन धनात्मक होता है. दूसरा हल पता करने के लिए, चौथे चतुर्थांश में हल पता करने के लिए से संदर्भ कोण जोड़ें.
चरण 11
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 11.1
कोष्ठक हटा दें.
चरण 11.2
कोष्ठक हटा दें.
चरण 11.3
और जोड़ें.
चरण 12
का आवर्त ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 12.1
फलन की अवधि की गणना का उपयोग करके की जा सकती है.
चरण 12.2
आवर्त काल के लिए सूत्र में को से बदलें.
चरण 12.3
निरपेक्ष मान किसी संख्या और शून्य के बीच की दूरी है. और के बीच की दूरी है.
चरण 12.4
को से विभाजित करें.
चरण 13
फलन की अवधि है, इसलिए मान प्रत्येक रेडियन को दोनों दिशाओं में दोहराएंगे.
, किसी भी पूर्णांक के लिए
चरण 14
और को में समेकित करें.
, किसी भी पूर्णांक के लिए