ट्रिगोनोमेट्री उदाहरण

व्युत्क्रम ज्ञात कीजिये f^-1(81)
चरण 1
चर को एकदूसरे के साथ बदलें.
चरण 2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
ऋणात्मक घातांक नियम का उपयोग करके को भाजक में ले जाएँ.
चरण 2.2.2.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.2.2
व्यंजक को फिर से लिखें.
चरण 2.3
समीकरण के पदों का LCD पता करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 2.3.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
चरण 2.3.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 2.3.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 2.3.5
के अभाज्य गुणन खंड हैं.
और स्टेप्स के लिए टैप करें…
चरण 2.3.5.1
के गुणनखंड और हैं.
चरण 2.3.5.2
के गुणनखंड और हैं.
चरण 2.3.5.3
के गुणनखंड और हैं.
चरण 2.3.6
गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.6.1
को से गुणा करें.
चरण 2.3.6.2
को से गुणा करें.
चरण 2.3.6.3
को से गुणा करें.
चरण 2.3.7
का गुणनखंड ही है.
बार आता है.
चरण 2.3.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 2.3.9
के लिए LCM (लघुत्तम समापवर्तक) संख्यात्मक भाग को चर भाग से गुणा किया जाता है.
चरण 2.4
भिन्नों को हटाने के लिए के प्रत्येक पद को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.1
के प्रत्येक पद को से गुणा करें.
चरण 2.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.4.2.2
और को मिलाएं.
चरण 2.4.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.2.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.2.3.2
व्यंजक को फिर से लिखें.
चरण 2.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.4.3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.4.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.4.3.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.4.3.2.2
व्यंजक को फिर से लिखें.
चरण 2.5
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.5.2
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 2.5.2.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.5.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.5.2.2.1.2
को से विभाजित करें.
चरण 3
Replace with to show the final answer.
चरण 4
सत्यापित करें कि क्या , का व्युत्क्रम है.
और स्टेप्स के लिए टैप करें…
चरण 4.1
व्युत्क्रम सत्यापित करने के लिए, जांचें कि क्या और .
चरण 4.2
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
समग्र परिणाम फलन सेट करें.
चरण 4.2.2
में का मान प्रतिस्थापित करके का मान ज्ञात करें.
चरण 4.2.3
ऋणात्मक घातांक नियम का उपयोग करके को न्यूमेरेटर में ले जाएं.
चरण 4.2.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.2.4.2
को से विभाजित करें.
चरण 4.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
समग्र परिणाम फलन सेट करें.
चरण 4.3.2
में का मान प्रतिस्थापित करके का मान ज्ञात करें.
चरण 4.3.3
आधार को उसके व्युत्क्रम के रूप में फिर से लिखकर घातांक के चिह्न को बदलें.
चरण 4.3.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.4.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 4.3.4.2
व्यंजक को फिर से लिखें.
चरण 4.4
चूँकि और , तो , का व्युत्क्रम है.